Skip to main content

Advertisement

Log in

Aktuelle Daten und Trends zur Antibiotikaresistenzentwicklung von Clostridium difficile

Current data and trends on the development of antibiotic resistance of Clostridium difficile

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Clostridium difficile ist der häufigste Erreger antibiotikaassoziierter Durchfallerkrankungen. Der Selektionsdruck durch Antibiotika begünstigt die Entwicklung und Ausbreitung multiresistenter Stämme. In der hier dargelegten retrospektiven Untersuchung wurden C.-difficile-Isolate des Universitätsklinikums des Saarlandes und von nationalen Einsendern des Konsiliarlabors phänotypisch und genotypisch charakterisiert. Als prädominante Genotypen wurden der Ribotyp 001 (18%), 014 (16%) und 027 (15%) identifiziert. Metronidazol und Vancomycin wurde Genotyp-unabhängig als sensibel getestet (99,7%). Gegenüber Rifampicin waren 96% der klinischen Isolate sensibel; dabei wurden Rifampicin-Resistenzen gehäuft beim Ribotyp 027 nachgewiesen (12%). Nur 58% bzw. 57% der Isolate waren gegenüber Clarithromycin bzw. Moxifloxacin sensibel; für die epidemisch relevanten Stämme 001, 027 und 078 war der Nachweis einer Makrolid- bzw. Fluoroquinolon-Resistenz – anders als bei sporadisch auftretenden Genotypen – besonders charakteristisch. Eine Differenzierung der Epidemiestämme allein anhand des Antibiogramms war jedoch nicht möglich. Es sollte angestrebt werden, durch Hygienemaßnahmen und einen rationalen Antibiotikaeinsatz die Zahl der C.-difficile-Infektionen (CDI) zu reduzieren und den Selektionsdruck auf multiresistente Stämme zu minimieren.

Abstract

Clostridium difficile is the most common pathogen causing antibiotic-associated diarrhea. Antibiotic therapy also favors the development and the epidemic spreading of multiresistant strains. In this present retrospective study clinical isolates from the University of Saarland Medical Center and of other German isolate referring hospitals were characterized by genotyping and antibiotic resistance testing. The most prevalent strains were ribotypes 001 (18%), 014 (16%) and 027 (15%). Sensitivity to metronidazol and vancomycin was demonstrated for 99.7 % of the clinical isolates independent of the genotype. Of the isolates 96 % were rifampicin susceptible; however, significantly more cases of rifampicin resistance were found among 027 strains (12 %). Of the isolates 58% were clarithromycin sensitive and 57% moxifloxacin sensitive. In contrast to the various sporadic genotypes the majority of epidemic strains were macrolide or fluoroquinolone resistant (001, 027 and 078); however, discrimination between epidemic strains by antibiotic resistance profiles could not be discerned. A combination of consistent adherence to hygiene management guidelines and to a prudent and rational use of antimicrobials (antibiotic stewardship) may help to reduce the total number of C. difficile infections (CDI) and also the selection of multiresistant strains. On the other hand in the collection of isolates the sensitivity towards the standard oral antibiotic agents used for C. difficile treatment appears to be unimpaired by the global changes of C. difficile resistant profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Rupnik M, Wilcox MH, Gerding DN (2009) Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 7:526–536

    Article  PubMed  CAS  Google Scholar 

  2. Kuehne SA, Cartman ST, Heap JT et al (2010) The role of toxin A and toxin B in Clostridium difficile infection. Nature 467:711–713

    Article  PubMed  CAS  Google Scholar 

  3. Rupnik M, Dupuy B, Fairweather NF et al (2005) Revised nomenclature of Clostridium difficile toxins and associated genes. J Med Microbiol 54:113–117

    Article  PubMed  CAS  Google Scholar 

  4. Bartlett JG, Chang TW, Gurwith M et al (1978) Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N Engl J Med 298:531–534

    Article  PubMed  CAS  Google Scholar 

  5. Stecher B, Hardt WD (2011) Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol 14:82–91

    Article  PubMed  CAS  Google Scholar 

  6. Pultz NJ, Donskey CJ (2005) Effect of antibiotic treatment on growth of and toxin production by Clostridium difficile in the cecal contents of mice. Antimicrob Agents Chemother 49:3529–3532

    Article  PubMed  CAS  Google Scholar 

  7. Huang H, Weintraub A, Fang H, Nord CE (2009) Antimicrobial resistance in Clostridium difficile. Int J Antimicrob Agents 34:516–522

    Article  PubMed  CAS  Google Scholar 

  8. Spigaglia P, Barbanti F, Mastrantonio P (2011) Multidrug resistance in European Clostridium difficile clinical isolates. J Antimicrob Chemother 66:2227–2234

    Article  PubMed  CAS  Google Scholar 

  9. Pelaez T, Cercenado E, Alcala L et al (2008) Metronidazole resistance in Clostridium difficile is heterogeneous. J Clin Microbiol 46:3028–3032

    Article  PubMed  CAS  Google Scholar 

  10. Bricker E, Garg R, Nelson R et al (2005) Antibiotic treatment for Clostridium difficile-associated diarrhea in adults. Cochrane Database Syst Rev: CD004610

    Google Scholar 

  11. Johnson S, Schriever C, Galang M et al (2007) Interruption of recurrent Clostridium difficile-associated diarrhea episodes by serial therapy with vancomycin and rifaximin. Clin Infect Dis 44:846–848

    Article  PubMed  CAS  Google Scholar 

  12. Surawicz CM, Alexander J (2011) Treatment of refractory and recurrent Clostridium difficile infection. Nat Rev Gastroenterol Hepatol 8:330–339

    Article  PubMed  CAS  Google Scholar 

  13. Venugopal AA, Johnson S (2012) Fidaxomicin: a novel macrocyclic antibiotic approved for treatment of Clostridium difficile infection. Clin Infect Dis 54:568–574

    Article  PubMed  Google Scholar 

  14. Cornely OA, Crook DW, Esposito R et al (2012) Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial. Lancet Infect Dis 12:281–289

    Article  PubMed  CAS  Google Scholar 

  15. Wiuff C, Brown DJ, Mather H et al (2011) The epidemiology of Clostridium difficile in Scotland. J Infect 62:271–279

    Article  PubMed  Google Scholar 

  16. Coia JE (2009) What is the role of antimicrobial resistance in the new epidemic of Clostridium difficile? Int J Antimicrob Agents 33(Suppl 1):S9–12

    Article  PubMed  CAS  Google Scholar 

  17. Buffie CG, Jarchum I, Equinda M et al (2012) Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 80:62–73

    Article  PubMed  CAS  Google Scholar 

  18. Freeman J, Bauer MP, Baines SD et al (2010) The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev 23:529–549

    Article  PubMed  CAS  Google Scholar 

  19. Kuijper EJ, Barbut F, Brazier JS et al (2008) Update of Clostridium difficile infection due to PCR ribotype 027 in Europe, 2008. Euro Surveill 13:pii:18942

    Google Scholar 

  20. Kleinkauf N, Weiss B, Jansen A et al (2007) Confirmed cases and report of clusters of severe infections due to Clostridium difficile PCR ribotype 027 in Germany. Euro Surveill 12:E071115 071112

    PubMed  Google Scholar 

  21. Cohen SH, Gerding DN, Johnson S et al (2010) Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol 31:431–455

    Article  PubMed  Google Scholar 

  22. Akerlund T, Alefjord I, Dohnhammar U et al (2011) Geographical clustering of cases of infection with moxifloxacin-resistant Clostridium difficile PCR-ribotypes 012, 017 and 046 in Sweden, 2008 and 2009. Euro Surveill 16:pii:19813

    Google Scholar 

  23. Gastmeier P, Weitzel-Kage D, Behnke M, Eckmanns T (2009) Surveillance of Clostridium difficile-associated diarrhoea with the German nosocomial infection surveillance system KISS (CDAD-KISS). Int J Antimicrob Agents 33(Suppl 1):S19–23

    Article  PubMed  CAS  Google Scholar 

  24. Joost I, Speck K, Herrmann M, Muller L von (2009) Characterisation of Clostridium difficile isolates by slpA and tcdC gene sequencing. Int J Antimicrob Agents 33(Suppl 1):S13–18

    Article  PubMed  CAS  Google Scholar 

  25. Kato H, Yokoyama T, Arakawa Y (2005) Typing by sequencing the slpA gene of Clostridium difficile strains causing multiple outbreaks in Japan. J Med Microbiol 54:167–171

    Article  PubMed  CAS  Google Scholar 

  26. Killgore G, Thompson A, Johnson S et al (2008) Comparison of seven techniques for typing international epidemic strains of Clostridium difficile: restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing. J Clin Microbiol 46:431–437

    Article  PubMed  CAS  Google Scholar 

  27. Erikstrup LT, Danielsen TK, Hall V et al (2012) Disc diffusion antimicrobial susceptibility testing of Clostridium difficile. ECCMID 22th Abstract Volume: P681

    Google Scholar 

  28. Hecht DW, Galang MA, Sambol SP et al (2007) In vitro activities of 15 antimicrobial agents against 110 toxigenic clostridium difficile clinical isolates collected from 1983–2004. Antimicrob Agents Chemother 51:2716–2719

    Article  PubMed  CAS  Google Scholar 

  29. Bauer MP, Notermans DW, Benthem BH van et al (2011) Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377:63–73

    Article  PubMed  Google Scholar 

  30. Walker AS, Eyre DW, Wyllie DH et al (2012) Characterisation of Clostridium difficile hospital ward-based transmission using extensive epidemiological data and molecular typing. PLoS Med 9:e1001172

    Article  PubMed  Google Scholar 

  31. Gerding DN, Muto CA, Owens RC Jr (2008) Treatment of Clostridium difficile infection. Clin Infect Dis 46(Suppl 1):S32–42

    Article  PubMed  CAS  Google Scholar 

  32. Baines SD, O’Connor R, Freeman J et al (2008) Emergence of reduced susceptibility to metronidazole in Clostridium difficile. J Antimicrob Chemother 62:1046–1052

    Article  PubMed  CAS  Google Scholar 

  33. Venugopal AA, Riederer K, Patel SM et al (2012) Lack of association of outcomes with treatment duration and microbiologic susceptibility data in Clostridium difficile infections in a non-NAP1/BI/027 setting. Scand J Infect Dis 44:243–249

    Article  PubMed  CAS  Google Scholar 

  34. Bolton RP, Culshaw MA (1986) Faecal metronidazole concentrations during oral and intravenous therapy for antibiotic associated colitis due to Clostridium difficile. Gut 27:1169–1172

    Article  PubMed  CAS  Google Scholar 

  35. Tedesco F, Markham R, Gurwith M et al (1978) Oral vancomycin for antibiotic-associated pseudomembranous colitis. Lancet 2:226–228

    Article  PubMed  CAS  Google Scholar 

  36. Huhulescu S, Sagel U, Fiedler A et al (2011) Rifaximin disc diffusion test for in vitro susceptibility testing of Clostridium difficile. J Med Microbiol 60:1206–1212

    Article  PubMed  CAS  Google Scholar 

  37. Miller MA, Blanchette R, Spigaglia P et al (2011) Divergent rifamycin susceptibilities of Clostridium difficile strains in Canada and Italy and predictive accuracy of rifampin Etest for rifamycin resistance. J Clin Microbiol 49:4319–4321

    Article  PubMed  CAS  Google Scholar 

  38. Brouwer MS, Warburton PJ, Roberts AP et al (2011) Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile. PLoS One 6:e23014

    Article  PubMed  CAS  Google Scholar 

  39. O’Connor JR, Galang MA, Sambol SP et al (2008) Rifampin and rifaximin resistance in clinical isolates of Clostridium difficile. Antimicrob Agents Chemother 52:2813–2817

    Article  Google Scholar 

  40. Spigaglia P, Barbanti F, Louie T et al (2009) Molecular analysis of the gyrA and gyrB quinolone resistance-determining regions of fluoroquinolone-resistant Clostridium difficile mutants selected in vitro. Antimicrob Agents Chemother 53:2463–2468

    Article  PubMed  CAS  Google Scholar 

  41. Ackermann G, Tang-Feldman YJ, Schaumann R et al (2003) Antecedent use of fluoroquinolones is associated with resistance to moxifloxacin in Clostridium difficile. Clin Microbiol Infect 9:526–530

    Article  PubMed  CAS  Google Scholar 

  42. Mena A, Riera E, Lopez-Causape C et al (2012) In vivo selection of moxifloxacin resistant Clostridium difficile. Antimicrob Agents Chemother 56:2788–2789

    Article  PubMed  CAS  Google Scholar 

  43. Zaiss NH, Witte W, Nubel U (2010) Fluoroquinolone resistance and Clostridium difficile, Germany. Emerg Infect Dis 16:675–677

    Article  PubMed  CAS  Google Scholar 

  44. Baxter R, Ray GT, Fireman BH (2008) Case-control study of antibiotic use and subsequent Clostridium difficile-associated diarrhea in hospitalized patients. Infect Control Hosp Epidemiol 29:44–50

    Article  PubMed  Google Scholar 

  45. Biller P, Shank B, Lind L et al (2007) Moxifloxacin therapy as a risk factor for Clostridium difficile-associated disease during an outbreak: attempts to control a new epidemic strain. Infect Control Hosp Epidemiol 28:198–201

    Article  PubMed  Google Scholar 

  46. Jakobsson HE, Jernberg C, Andersson AF et al (2010) Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 5:e9836

    Article  PubMed  Google Scholar 

  47. Jump RL, Li Y, Pultz MJ et al (2011) Tigecycline exhibits inhibitory activity against Clostridium difficile in the colon of mice and does not promote growth or toxin production. Antimicrob Agents Chemother 55:546–549

    Article  PubMed  CAS  Google Scholar 

  48. Herpers BL, Vlaminckx B, Burkhardt O et al (2009) Intravenous tigecycline as adjunctive or alternative therapy for severe refractory Clostridium difficile infection. Clin Infect Dis 48:1732–1735

    Article  PubMed  CAS  Google Scholar 

  49. El-Herte RI, Baban TA, Kanj SS (2012) Recurrent refractory Clostridium difficile colitis treated successfully with rifaximin and tigecycline: a case report and review of the literature. Scand J Infect Dis 44:228–230

    Article  PubMed  CAS  Google Scholar 

  50. Blaut M, Clavel T (2007) Metabolic diversity of the intestinal microbiota: implications for health and disease. J Nutr 137:751S–755S

    PubMed  CAS  Google Scholar 

  51. Kelly CR, Leon L de, Jasutkar N (2012) Fecal microbiota transplantation for relapsing Clostridium difficile infection in 26 patients: methodology and results. J Clin Gastroenterol 46:145–149

    Article  PubMed  Google Scholar 

  52. Aas J, Gessert CE, Bakken JS (2003) Recurrent Clostridium difficile colitis: case series involving 18 patients treated with donor stool administered via a nasogastric tube. Clin Infect Dis 36:580–585

    Article  PubMed  Google Scholar 

  53. Talpaert MJ, Gopal Rao G, Cooper BS, Wade P (2011) Impact of guidelines and enhanced antibiotic stewardship on reducing broad-spectrum antibiotic usage and its effect on incidence of Clostridium difficile infection. J Antimicrob Chemother 66:2168–2174

    Article  PubMed  CAS  Google Scholar 

  54. Huang H, Weintraub A, Fang H, Nord CE (2009) Community acquired Clostridium difficile infection due to a moxifloxacin susceptible ribotype 027 strain. Scand J Infect Dis 41:158–159

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Diese Studie wurde unterstützt durch eine Projektförderung des Robert Koch-Instituts (RKI). Herzlichen Dank an alle einsendenden Laboratorien und Kliniken. Stellvertretend für alle technischen Mitarbeiterinnen ein besonderer Dank an S. Hornung, S. Freis, S. Loibl und M. Birke. Für die Unterstützung bei der Datenbankabfrage danken wir Frau Funkhauser und Herrn Schwelling (Fa. Dorner).

Interessenkonflikt

Der korrespondierende Autor weist für sich und seine Koautoren auf folgende Beziehungen hin: LvM und MH sind als Referenten für die Firma Astellas tätig; AH gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. von Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Müller, L., Halfmann, A. & Herrmann, M. Aktuelle Daten und Trends zur Antibiotikaresistenzentwicklung von Clostridium difficile . Bundesgesundheitsbl. 55, 1410–1417 (2012). https://doi.org/10.1007/s00103-012-1556-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-012-1556-6

Schlüsselwörter

Keywords

Navigation