Skip to main content
Log in

Die DONALD Kohorte

Ein aktueller Überblick zu 25 Jahren Forschung im Rahmen der Dortmund Nutritional and Anthropometric Longitudinally Designed Study

The DONALD cohort

An updated overview on 25 years of research based on the DOrtmund Nutritional and Anthropometric Longitudinally Designed study

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Die DONALD Studie wird seit 1985 in Dortmund durchgeführt, um die komplexen Wechselwirkungen zwischen Ernährung, Stoffwechsel, Entwicklung und Wachstum bei gesunden Kindern zu analysieren. In die offene Kohorte werden jährlich etwa 40 Säuglinge neu eingeschlossen. Das engmaschige Studienprotokoll vom Säuglings- bis ins junge Erwachsenenalter umfasst anthropometrische Messungen, Drei-Tage-Wiege-Ernährungsprotokoll, 24-Stunden-Urinsammlung (ab dem dritten bis vierten Lebensjahr) und ärztliche Untersuchungen. Seit 2005 wird zu Nachuntersuchungen im Erwachsenenalter eingeladen (inklusive Nüchternblutprobe). Bis 2010 wurden etwa 1400 Probanden rekrutiert. Auswertungen aus den letzten Jahren zeigten unter anderem (i) die Bedeutung frühkindlicher Faktoren für die Entwicklung der Körperzusammensetzung und den Eintritt in die Pubertät sowie (ii) die Relevanz des präpubertären Hormonstatus für den Zeitpunkt des Pubertätsbeginns. Ferner wurden (iii) Alters- und Zeittrends im Jodstatus und in modernen Ernährungsgewohnheiten beschrieben, ebenso wie (iv) mögliche Furan- oder Benzol-Expositionen durch kommerzielle Beikost. Zukünftige Analysen sollen insbesondere die Relevanz von Ernährung, Wachstumsmustern und Hormonstatus in möglichen „kritischen Phasen“ während der Kindheit für die Gesundheit im Erwachsenenalter beleuchten.

Abstract

The DONALD study has been conducted in Dortmund, Germany since 1985 to examine the complex relations between nutritional intake, metabolism and growth from infancy to adulthood. Every year, approximately 40 infants are newly recruited into the open cohort study. Examinations conducted at ages 3, 6, 9, 12, 18, 24 months and then annually until young adulthood, comprise anthropometry, a 3 day weighed dietary record, a 24 h urine sample (from age 3–4 years onwards), medical examinations and parental interviews. Since 2005, participants are invited for follow-up visits during adulthood (including fasting blood samples). Approximately 1,400 children have been recruited into the study up to 2010. Recent findings revealed e.g. (i) the relevance of early life factors for subsequent development of body composition and puberty timing, (ii) the relation between pubertal hormonal status and puberty onset, (iii) age and time trends in iodine status and modern dietary habits and (iv) potential furan and benzol exposition by commercial weaning foods. Future analyses will provide insight into the extent to which health in young adulthood is receptive to diet, anthropometric pattern and hormonal status in distinct potentially critical periods during childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Kroke A, Manz F, Kersting M et al (2004) The DONALD Study: history, current status and future perspectives. Eur J Nutr 43:45–54

    Article  PubMed  Google Scholar 

  2. Kersting M, Alexy U (2008) Die DONALD Studie. Forschung zur Verbesserung der Kinderernährung. Ernährungs-Umschau 1:16–19

    Google Scholar 

  3. Mensink GB, Haftenberger M, Thamm M (2001) Validity of DISHES 98, a computerised dietary history interview: energy and macronutrient intake. Eur J Clin Nutr 55:409–417

    Article  PubMed  CAS  Google Scholar 

  4. Bingham SA, Gill C, Welch A et al (1997) Validation of dietary assessment methods in the UK arm of EPIC using weighed records, and 24-hour urinary nitrogen and potassium and serum vitamin C and carotenoids as biomarkers. Int J Epidemiol 26(Suppl 1):137–151

    Article  Google Scholar 

  5. Johner SA, Gunther AL, Remer T (2011) Current trends of 24-h urinary iodine excretion in German schoolchildren and the importance of iodised salt in processed foods. Br J Nutr 106:1749–1756

    Article  PubMed  CAS  Google Scholar 

  6. Remer T, Manz F, Alexy U et al (2011) Long-term high urinary potential renal acid load and low nitrogen excretion predict reduced diaphyseal bone mass and bone size in children. J Clin Endocrinol Metab 96:2861–2688

    Article  PubMed  CAS  Google Scholar 

  7. Remer T, Shi L, Buyken AE et al (2010) Prepubertal adrenarchal androgens and animal protein intake independently and differentially influence pubertal timing. J Clin Endocrinol Metab 95:3002–3009

    Article  PubMed  CAS  Google Scholar 

  8. Shi L, Wudy SA, Buyken AE et al (2011) Prepubertal glucocorticoid status and pubertal timing. J Clin Endocrinol Metab 96:E891–898

    Article  PubMed  CAS  Google Scholar 

  9. Bokhof B, Gunther AL, Berg-Beckhoff G et al (2010) Validation of protein intake assessed from weighed dietary records against protein estimated from 24 h urine samples in children, adolescents and young adults participating in the Dortmund Nutritional and Longitudinally Designed (DONALD) Study. Public Health Nutr 13:826–834

    Article  PubMed  Google Scholar 

  10. Remer T, Fonteyn N, Alexy U, Berkemeyer S (2006) Longitudinal examination of 24-h urinary iodine excretion in schoolchildren as a sensitive, hydration status-independent research tool for studying iodine status. Am J Clin Nutr 83:639–646

    PubMed  CAS  Google Scholar 

  11. Deurenberg P, Weststrate JA, Seidell JC (1991) Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br J Nutr 65:105–114

    Article  PubMed  CAS  Google Scholar 

  12. Slaughter MH, Lohman TG, Boileau RA et al (1988) Skinfold equations for estimation of body fatness in children and youth. Hum Biol 60:709–723

    PubMed  CAS  Google Scholar 

  13. Kurth BM, Schaffrath Rosario A (2007) Die Verbreitung von Übergewicht und Adipositas bei Kinder und Jugendlichen in Deutschland. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 50:736–743

    Article  Google Scholar 

  14. Kromeyer-Hauschild K, Wabitsch M, Kunze D et al (2001) Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd 149:807–818

    Article  Google Scholar 

  15. Kroke A, Hahn S, Buyken AE, Liese AD (2006) A comparative evaluation of two different approaches to estimating age at adiposity rebound. Int J Obes (Lond) 30:261–266

    Google Scholar 

  16. Rolland-Cachera MF, Deheeger M, Maillot M, Bellisle F (2006) Early adiposity rebound: causes and consequences for obesity in children and adults. Int J Obes (Lond) 30(Suppl 4):11–17

    Google Scholar 

  17. Rosario AS, Kurth BM, Stolzenberg H et al (2010) Body mass index percentiles for children and adolescents in Germany based on a nationally representative sample (KiGGS2003–2006). Eur J Clin Nutr 64:341–349

    Article  PubMed  Google Scholar 

  18. Preece MA, Baines MJ (1978) A new family of mathematical models describing the human growth curve. Ann Hum Biol 5:1–24

    Article  PubMed  CAS  Google Scholar 

  19. Iuliano-Burns S, Mirwald RL, Bailey DA (2001) Timing and magnitude of peak height velocity and peak tissue velocities for early, average, and late maturing boys and girls. Am J Hum Biol 13:1–8

    Article  PubMed  CAS  Google Scholar 

  20. Karlberg J (2002) Secular trends in pubertal development. Horm Res 57(Suppl 2):19–30

    Article  PubMed  CAS  Google Scholar 

  21. Diethelm K, Bolzenius K, Cheng G et al (2011) Longitudinal associations between reported sleep duration in early childhood and the development of body mass index, fat mass index and fat free mass index until age 7. Int J Pediatr Obes 6:e114–123

    Article  PubMed  Google Scholar 

  22. Karaolis-Danckert N, Buyken AE, Sonntag A, Kroke A (2009) Birth and early life influences on the timing of puberty onset: results from the DONALD (DOrtmund Nutritional and Anthropometric Longitudinally Designed) Study. Am J Clin Nutr 90:1559–1565

    Article  PubMed  CAS  Google Scholar 

  23. Gunther AL, Buyken AE, Kroke A (2006) The influence of habitual protein intake in early childhood on BMI and age at adiposity rebound: results from the DONALD Study. Int J Obes (Lond) 30:1072–1079

    Google Scholar 

  24. Shi L, Remer T, Buyken AE et al (2010) Prepubertal urinary estrogen excretion and its relationship with pubertal timing. Am J Physiol Endocrinol Metab 299:E990–997

    Article  PubMed  CAS  Google Scholar 

  25. Gunther AL, Remer T, Kroke A, Buyken AE (2007) Early protein intake and later obesity risk: which protein sources at which time points throughout infancy and childhood are important for body mass index and body fat percentage at 7 years of age? Am J Clin Nutr 86:1765–1772

    PubMed  Google Scholar 

  26. Herbst A, Diethelm K, Cheng G et al (2011) Direction of associations between added sugar intake in early childhood and body mass index at age 7 years may depend on intake levels. J Nutr 141:1348–1354

    Article  PubMed  CAS  Google Scholar 

  27. Libuda L, Alexy U, Sichert-Hellert W et al (2008) Pattern of beverage consumption and long-term association with body-weight status in German adolescents – results from the DONALD study. Br J Nutr 99:1370–1379

    Article  PubMed  CAS  Google Scholar 

  28. Cheng G, Karaolis-Danckert N, Libuda L et al (2009) Relation of dietary glycemic index, glycemic load, and fiber and whole-grain intakes during puberty to the concurrent development of percent body fat and body mass index. Am J Epidemiol 169:667–677

    Article  PubMed  Google Scholar 

  29. Hilbig A, Kersting M (2006) Effects of age and time on energy and macronutrient intake in German infants and young children: results of the DONALD study. J Pediatr Gastroenterol Nutr 43:518–524

    Article  PubMed  Google Scholar 

  30. Lucas A, Fewtrell MS, Cole TJ (1999) Fetal origins of adult disease-the hypothesis revisited. Bmj 319:245–249

    Article  PubMed  CAS  Google Scholar 

  31. Lanigan J, Singhal A (2009) Early nutrition and long-term health: a practical approach. Proc Nutr Soc 68:422–429

    Article  PubMed  Google Scholar 

  32. Datar A, Shier V, Sturm R (2011) Changes in body mass during elementary and middle school in a national cohort of kindergarteners. Pediatrics 128:e1411–1417

    Article  PubMed  Google Scholar 

  33. Kries R von, Beyerlein A, Muller M J et al (2012) Different age-specific incidence and remission rates in pre-school and primary school suggest need for targeted obesity prevention in childhood. Int J Obes (Lond) 36:505–510

    Google Scholar 

  34. Alexy U, Wicher M, Kersting M (2010) Breakfast trends in children and adolescents: frequency and quality. Public Health Nutr 13:1795–1802

    Article  PubMed  Google Scholar 

  35. Kersting M, Alexy U (2011) Ernährung bei Vorschulkindern: Empfehlungen und Wirklichkeit. J Klin Endokrinol Stoffw 4:11–15

    Google Scholar 

  36. Huybrechts I, Sioen I, Boon P et al (2011) Dietary exposure assessments for children in Europe (the EXPOCHI project): rationale, methods and design. Arch Public Health 69:4

    Article  Google Scholar 

  37. Monteiro PO, Victora CG (2005) Rapid growth in infancy and childhood and obesity in later life – a systematic review. Obes Rev 6:143–154

    Article  PubMed  CAS  Google Scholar 

  38. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320:1240–1243

    Article  PubMed  CAS  Google Scholar 

  39. McCarthy HD, Cole TJ, Fry T et al (2006) Body fat reference curves for children. Int J Obes (Lond) 30:598–602

    Google Scholar 

  40. Gunther AL, Karaolis-Danckert N, Kroke A et al (2010) Dietary protein intake throughout childhood is associated with the timing of puberty. J Nutr 140:565–571

    Article  PubMed  Google Scholar 

  41. Shi L, Wudy SA, Buyken AE et al (2009) Body fat and animal protein intakes are associated with adrenal androgen secretion in children. Am J Clin Nutr 90:1321–1328

    Article  PubMed  CAS  Google Scholar 

  42. Alexy U, Remer T, Manz F et al (2005) Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. Am J Clin Nutr 82:1107–1114

    PubMed  CAS  Google Scholar 

  43. Krupp D, Johner SA, Kalhoff H et al (2012) Long-term dietary potential renal acid load during adolescence is prospectively associated with indices of nonalcoholic fatty liver disease in young women. J Nutr 142:313–319

    Article  PubMed  CAS  Google Scholar 

  44. Cheng G, Remer T, Prinz-Langenohl R et al (2010) Relation of isoflavones and fiber intake in childhood to the timing of puberty. Am J Clin Nutr 92:556–564

    Article  PubMed  CAS  Google Scholar 

  45. Alexy U, Libuda L, Mersmann S, Kersting M (2011) Convenience foods in children’s diet and association with dietary quality and body weight status. Eur J Clin Nutr 65:160–166

    Article  PubMed  CAS  Google Scholar 

  46. Cheng G, Libuda L, Karaolis-Danckert N et al (2010) Trends in dietary carbohydrate quality during puberty from 1988 to 2007: a cause for concern? Br J Nutr 104:1375–1383

    Article  PubMed  CAS  Google Scholar 

  47. Alexy U, Zorn C, Kersting M (2010) Whole grain in children’s diet: intake, food sources and trends. Eur J Clin Nutr 64:745–751

    Article  PubMed  CAS  Google Scholar 

  48. Drossard C, Alexy U, Bolzenius K et al (2011) Anthocyanins in the diet of infants and toddlers: intake, sources and trends. Eur J Nutr 50:705–711

    Article  PubMed  CAS  Google Scholar 

  49. Lachenmeier DW, Kuballa T, Reusch H et al (2010) Benzene in infant carrot juice: further insight into formation mechanism and risk assessment including consumption data from the DONALD study. Food Chem Toxicol 48:291–297

    Article  PubMed  CAS  Google Scholar 

  50. Lachenmeier DW, Maser E, Kuballa T et al (2010) Detailed exposure assessment of dietary furan for infants consuming commercially jarred complementary food based on data from the DONALD study. Matern Child Nutr (doi:10.1111/j.1740-8709.2010.00288)

    Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.E. Buyken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buyken, A., Alexy, U., Kersting, M. et al. Die DONALD Kohorte. Bundesgesundheitsbl. 55, 875–884 (2012). https://doi.org/10.1007/s00103-012-1503-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-012-1503-6

Schlüsselwörter

Keywords

Navigation