Skip to main content
Log in

Prinzipien Magnet-Resonanz-geführter Intervention, Operation, Navigation und Robotik

Principles of MR-guided interventions, surgery, navigation, and robotics

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Die Anwendung der Magnet-Resonanz-Tomographie (MRT) als bildgebendes Verfahren bei interventionellen und operativen Techniken eröffnet eine neue Dimension präziser Prozeduren ohne die Belastung durch ioniserende Strahlung und nierenschädigende, allergene, jodhaltige Kontrastmittel. Im vorliegenden Beitrag werden einige technische Möglichkeiten der mit interventionellen Geräten und Systemen, Navigation und Robotik kombinierten MRT erläutert.

Abstract

The application of magnetic resonance imaging (MRI) as an imaging technique in interventional and surgical techniques provides a new dimension of soft tissue-oriented precise procedures without exposure to ionizing radiation and nephrotoxic allergenic, iodine-containing contrast agents. The technical capabilities of MRI in combination with interventional devices and systems, navigation, and robotics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Jacob AL, Regazzoni P, Bilecen D et al (2007) Medical technology integration: CT, angiography, imaging-capable OR-table, navigation and robotics in a multifunctional sterile suite. Minim Invasive Ther Allied Technol 16:205–211

    Article  CAS  PubMed  Google Scholar 

  2. Lauterbur PC (1973) Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 242:190–119

    Article  CAS  Google Scholar 

  3. Rieke V, Butts PK (2008) MR thermometry. J Magn Reson Imaging 27:376–390

    Article  PubMed  Google Scholar 

  4. Vogl TJ, Mack MG, Straub R (1997) Percutaneous MRI-guided laser-induced thermotherapy. Min Invas Ther Allied Technol 6:53–64

    Article  Google Scholar 

  5. Jolesz FA, Hynynen K (2002) Magnetic resonance image-guided focused ultrasound surgery. Cancer J 8:100–112

    Article  Google Scholar 

  6. Kettenbach J, Grundfest WS (1998) Cost-effectiveness of image-guided surgery. Acad Radiol 5(Suppl 2):428–431

    Article  Google Scholar 

  7. Melzer A (1999) Instruments and equipment for open-field magnetic resonance imaging. In: Lufkin RB, Groenemeyer DHW (Hrsg) Open low field magnetic resonance imaging. Springer, Heidelberg, S 57–70

  8. Lewin JS (1999) Interventional MR imaging: concepts, systems, and applications in neuroradiology. AJNR Am J Neuroradiol 20:735–748

    CAS  PubMed  Google Scholar 

  9. Nitz WR, Brinker G, Diehl D, Frese G (2005) Specific absorption rate as a poor indicator of magnetic resonance-related implant heating. Invest Radiol 40:773–776

    Article  PubMed  Google Scholar 

  10. Luechinger R, Zeijlemaker VA, Pedersen EM et al (2005) In vivo heating of pacemaker leads during magnetic resonance imaging. Eur Heart J 26:376–383

    Article  PubMed  Google Scholar 

  11. Bücker A (2006) Safety of MRI-guided vascular interventions. Minim Invasive Ther Allied Technol 15:65–70

    Article  Google Scholar 

  12. Kettenbach J, Kacher DF, Kanan AR et al (2006) Intraoperative and interventional MRI: recommendations for a safe environment. Minim Invasive Ther Allied Technol 15:53–64

    Article  PubMed  Google Scholar 

  13. Thomas DG, Davis CH, Ingram S et al (1986) Stereotaxic biopsy of the brain under MR imaging control. Am J Neuroradiol 7:161–163

    CAS  PubMed  Google Scholar 

  14. Lewin JS, Duerk JL, Jain VR et al (1996) Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. AJR Am J Roentgenol 166:1337–1345

    CAS  PubMed  Google Scholar 

  15. Manke C, Nitz WR, Djavidani (2001) MR imaging-guided stent placement in iliac arterial stenoses: a feasibility study. Radiology 219:527–534

    CAS  PubMed  Google Scholar 

  16. Schaefers G, Melzer A (2006) Testing methods for MR safety and compatibility of medical devices. Minim Invasive Ther Allied Technol 15:71–75

    Article  PubMed  Google Scholar 

  17. Schaefers G (2006) Testing methods for MR safety and compatibility of medical devices. Minim Invasive Ther Allied Technol 15:71–76

    Article  PubMed  Google Scholar 

  18. Kos S, Huegli R, Hofmann E et al (2009) MR-compatible polyetheretherketone-based guide wire assisting MR-guided stenting of iliac and supraaortic arteries in swine: feasibility study. Minim Invasive Ther Allied Technol 18:1–8

    Article  Google Scholar 

  19. Melzer A, Schmidt AA, Kipfmueller K et al (1997) Technology and principles of tomographic image-guided interventions and surgery. Surg Endosc 11:946–956

    Article  CAS  PubMed  Google Scholar 

  20. Melzer A, Wendt M, Seibel R et al (1999) Experimental intra- and interoperative MRI during laparo-endoscopic surgery. Radiology 217(Suppl):1051

    Google Scholar 

  21. Melzer A, Scholz M, Seibel R (1999) Feasibility of MR guided neuroendoscopy. In: Lufkin RB, Grönemeyer DHW (Hrsg) Interventional MRI. Mosby, New York, S 154–160

  22. Chopra SS, Wiltberger G, Teichgraeber U (2009) Evaluation of laparoscopic liver resection with two different Nd: YAG lasers for future use in a high-field open MRI. Photomed Laser Surg 27:281–286

    Article  PubMed  Google Scholar 

  23. Seibel R, Melzer A, Schmidt A, Plassmann J (1997) CT and MRI guided microtherapy. Semin Laparosc Surg 4:61–73

    PubMed  Google Scholar 

  24. Burl M, Coutts GA, Young IR (1996) Tuned fiducial markers to identify body locations with minimal perturbation of tissue magnetization. Magn Reson Med 36:491–493

    Article  CAS  PubMed  Google Scholar 

  25. Immel E, Melzer A (2006) Improvement of the MR imaging behaviour of vascular implants. Minim Invasive Ther Allied Technol 15:85–92

    Article  PubMed  Google Scholar 

  26. Wendt M, Busch M, Wetzler R et al (1998) Shifted rotated keyhole imaging and active tip-tracking for interventional procedure guidance. JMRI 8:258–261

    Article  CAS  PubMed  Google Scholar 

  27. Quick HH, Zenge MO, Kuehl H, Kaiser G (2005) Interventional magnetic resonance angiography with no strings attached: wireless active catheter visualization. Magn Reson Med 53:446–455

    Article  PubMed  Google Scholar 

  28. Weiss S, Kuehne T, Brinkert F, Krombach G (2004) In vivo safe catheter visualization and slice tracking using an optically detunable resonant marker. Magn Reson Med 52:860–868

    Article  PubMed  Google Scholar 

  29. Kettenbach J, Kronreif, Melzer A et al (2008) Ultrasound, CT, MRI guided robotic interventions. In: Neri E, Caramella D, Carlo Bartolozzi C (Hrsg) Image processing in radiology: current applications. Springer, Heidelberg New York, S 393–409

  30. Zimmermann H, Müller S, Gutmann B et al (2006) Targeted HASTE (TASTE) imaging with automated device tracking for MR-guided needle interventions in closed-bore MR-Systems. JMRI 53:481–488

    Google Scholar 

  31. Melzer A, Schurr MO, Kunert W et al (1993) Intelligent surgical instrument system ISIS. Concept and preliminary experimental application of components and prototypes. Endosc Surg Allied Technol 1:165–170

    CAS  PubMed  Google Scholar 

  32. Cleary K, Melzer A, Watson V et al (2006) Interventional robotic systems: applications and technology state-of-the art. Minim Invasive Ther Allied Technol 15:101–113

    Article  PubMed  Google Scholar 

  33. Melzer A, Gutmann B, Remmele T et al (2008) INNOMOTION for percutaneous image-guided interventions. IEEE Eng Med Biol Mag 27:66–73

    Article  PubMed  Google Scholar 

  34. Zangos S, Sadighi C, Thalhammer A et al (2010) MR-compatible assistance system for biopsies in a highfield system: initial results in patients with suspicious prostate lesions. (submitted to Radiology)

  35. Melzer A, Horvath K, Guttman et al (2006) MR-guided trans apical delivery of a self expanding heart valve prosthesis equipped with a resonant circuit: Initial Experiences in Porcine Model. ISMRM Proceedings #219

  36. Bradley GW (2009) MR-guided focused ultrasound: a potentially disruptive technology. J Am Coll Radiol 6:510–513

    Article  PubMed  Google Scholar 

  37. Gianfelice D, Gupta CH, Kucharczyk W et al (2008) Palliative treatment of painful bone metastases with MR imaging – guided focused ultrasound radiology. 249:352–362

  38. Pua EC, Zhong P (2009) Ultrasound-mediated drug delivery. IEEE Eng Med Biol Mag 28:64–75

    Article  PubMed  Google Scholar 

  39. Prentice P, Cuschieri A, Dholakia K et al (2005) Membrane disruption by optically controlled microbubble cavitation. Nat Phys 1:107–111

    Article  CAS  Google Scholar 

  40. Schroeder A, Honen R, Turjeman K et al (2009) Ultrasound triggered release of cisplatin from liposomes in murine tumors. J Control Release 137:63–68

    Article  CAS  PubMed  Google Scholar 

  41. Kost J, Leongt K, Langer R (1989) Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci USA 86:7663–7666

    Article  CAS  PubMed  Google Scholar 

  42. Melzer A (2008) Technology in the operating theatre of the future – integration of imaging methods in the image guided surgery. Zentralbl Chir 133:197–200

    Article  CAS  PubMed  Google Scholar 

  43. Melzer A (2002) Lehr- und Forschungs-OP zur Integration Bildgebender Verfahren. Health Technol 1:16–17

    Google Scholar 

  44. Goel VR, Ambekar A, Greenberg K (2008) Multimodality imaging and image-guided-surgery

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Prof. Dr. Andreas Melzer war Teilhaber an der Firma Innomedic, die den MR-Roboter Innomotion entwickelt hat, und ist im Besitz der Patentrechte an den beschriebenen resonanten Implantaten.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Melzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melzer, A. Prinzipien Magnet-Resonanz-geführter Intervention, Operation, Navigation und Robotik. Bundesgesundheitsbl. 53, 768–775 (2010). https://doi.org/10.1007/s00103-010-1101-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-010-1101-4

Schlüsselwörter

Keywords

Navigation