Skip to main content
Log in

Stammzellbasierte In-vitro-Modelle als Ersatz für Tiermodelle bei Toxizitäts- und Wirksamkeitsprüfungen

Stem cell-based in vitro models as alternative methods for toxicity and efficacy tests in animals

  • reaLeitthema: Forschung mit humanen embryonalen Stammzellen
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

In Bezug auf Toxizitäts- und Wirksamkeitsstudien für pharmakologische Formulierungen, Medikamentenkandidaten und andere chemische Substanzen (REACH) besteht der Bedarf, Ersatzmodelle für Tierversuche auf der Basis kultivierter menschlicher Zellen (In-vitro-Systeme) zu entwickeln. Im vorliegenden Beitrag werden Ergebnisse aus frühen Phasen von Projekten vorgestellt, die das diesbezügliche Potenzial muriner und humaner embryonaler Stammzellmodelle (mESC- bzw. hESC-Modelle) erforschen. Dabei liegt der Fokus auf der Etablierung von ESC-Modellen für neurodegenerative Erkrankungen zur Wirksamkeitstestung entsprechender Pharmaka sowie auf entsprechenden Modellen zur Testung der Embryotoxizität von Substanzen. Es konnte zunächst gezeigt werden, dass aus hESC differenzierte Neurone ein für neuronale Zellen typisches funktionelles Verhalten aufweisen. Zu beobachten war zudem, dass in diesen Zellen Prozesse induziert werden können, die für eine Ischämie oder nach einer exzitotoxischen Neuronenschädigung (z. B. Glutamat-vermittelte Toxizität) charakteristisch sind. Vorgestellt werden weiterhin Möglichkeiten zur Entwicklung genauerer molekularer Endpunkte, die für die Bestimmung der Wirksamkeit von Substanzen in diesen Modellen genutzt werden könnten. Abschließend werden die Ergebnisse aus einem groß angelegten europäischen Projekt zur Embryotoxizität (http://www.reprotect.eu) diskutiert, bei dem auch murine und menschliche ESC-Modelle verwendet wurden.

Abstract

Regarding toxicity and efficacy tests of pharmacological and chemical substances (REACH legislation in Europe), there is a strong need to develop alternative methods for animal in vivo studies, in particular for human in vitro models. Here we present results from early phases of projects exploring the potential of embryonic stem cell models, with a special emphasis on embryo toxicity and neuronal stress.

We have been able to demonstrate key functional read-outs of neural hESC models, in addition to representing mechanistic aspects which are characteristic for ischemia or excitotoxicity. There is agreement that these mechanisms underlie a variety of human neurodegenerative diseases. We discuss the possibilities to develop more precise endpoints on the molecular level and present an example of a protein biomarker signature emerging from a European FP6 project about embryo toxicity (www.reprotect.eu), employing murine and human embryonic stem cell models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Schrattenholz A, Klemm M (2007) How human embryonic stem cell research can impact in vitro drug screening technologies of the future. In: Marx U, Sandig V (eds) Drug testing in vitro: break-throughs and trends in cell culture technology. Wiley/VCH Weinheim, S 205–228

  2. Genschow E, Spielmann H, Scholz G, et al. (2002) The ECVAM international validation study on in vitro embryotoxicity tests: results of the definitive phase and evaluation of prediction models. European Centre for the Validation of Alternative Methods. Altern Lab Anim 30:151–176

    PubMed  CAS  Google Scholar 

  3. Genschow E, Spielmann H, Scholz G, et al. (2004) Validation of the embryonic stem cell test in the international ECVAM validation study on three in vitro embryotoxicity tests. Altern Lab Anim 32:209–244

    PubMed  CAS  Google Scholar 

  4. Seiler A, Visan A, Buesen R, et al. (2004) Improvement of an in vitro stem cell assay for developmental toxicity: the use of molecular endpoints in the embryonic stem cell test. Reprod Toxicol 18:231–240

    Article  PubMed  CAS  Google Scholar 

  5. Piersma AH, Genschow E, Verhoef A, et al. (2004) Validation of the postimplantation rat whole-embryo culture test in the international ECVAM validation study on three in vitro embryotoxicity tests. Altern Lab Anim 32:275–307

    PubMed  CAS  Google Scholar 

  6. Seiler A, Buesen R, Hayess K, et al. (2006) Current status of the embryonic stem cell test: the use of recent advances in the field of stem cell technology and gene expression analysis. ALTEX 23 (Suppl):393–399

    PubMed  Google Scholar 

  7. Schrattenholz A, Klemm M (2007) Neuronal cell culture from human embryonic stem cells as in vitro model for neuroprotection. ALTEX 24(1):9–15

    PubMed  Google Scholar 

  8. Schrattenholz A, Soskic V (2006) NMDA receptors are not alone: dynamic regulation of NMDA receptor structure and function by neuregulins and transient cholesterol-rich membrane domains leads to disease-specific nuances of glutamate-signalling. Curr Top Med Chem 6:663–686

    Article  PubMed  CAS  Google Scholar 

  9. Metzger F, Klapproth N, Kulik A, et al. (2005) Optical assessment of motoneuron function in a “twenty-four-hour“ acute spinal cord slice model from fetal rats. J Neurosci Methods 141:309–320

    Article  PubMed  Google Scholar 

  10. Schillo S, Pejovic V, Hunzinger C, et al. (2005) Integrative proteomics: functional and molecular characterization of a particular glutamate-related neuregulin isoform. J Proteome Res 4:900–908

    Article  PubMed  CAS  Google Scholar 

  11. Sommer S, Hunzinger C, Schillo S, et al. (2004) Molecular analysis of homocysteic acid-induced neuronal stress. J Proteome Res 3:572–581

    Article  PubMed  CAS  Google Scholar 

  12. Soskic V, Klemm M, Proikas-Cezanne T, et al. (2008) A connection between the mitochondrial permeability transition pore, autophagy and cerebral amyloidogenesis. J Proteome Res (in press)

  13. Hareng L, Pellizzer C, Bremer S, et al. (2005) The integrated project ReProTect: a novel approach in reproductive toxicity hazard assessment. Reprod Toxicol 20:441–452

    Article  PubMed  CAS  Google Scholar 

  14. Groebe K, Krause F, Kunstmann B, et al. (2007) Differential proteomic profiling of mitochondria from Podospora anserina, rat and human reveals distinct patterns of age-related oxidative changes. Exp Gerontol 42:887–898

    Article  PubMed  CAS  Google Scholar 

  15. Hunzinger C, Schrattenholz A, Poznanovic S, et al. (2006) Comparison of different separation technologies for proteome analyses: isoform resolution as a prerequisite for the definition of protein biomarkers on the level of posttranslational modifications. J Chromatogr A 1123:170–181

    Article  PubMed  CAS  Google Scholar 

  16. Hunzinger C, Wozny W, Schwall GP, et al. (2006) Comparative profiling of the mammalian mitochondrial proteome: multiple aconitase-2 isoforms including N-formylkynurenine modifications as part of a protein biomarker signature for reactive oxidative species. J Proteome Res 5:625–633

    Article  PubMed  CAS  Google Scholar 

  17. Neubauer H, Clare SE, Kurek R, et al. (2006) Breast cancer proteomics by laser capture microdissection, sample pooling, 54-cm IPG IEF, and differential iodine radioisotope detection. Electrophoresis 27:1840–1852

    Article  PubMed  CAS  Google Scholar 

  18. Poznanovic S, Wozny W, Schwall GP, et al. (2005) Differential radioactive proteomic analysis of microdissected renal cell carcinoma tissue by 54 cm isoelectric focusing in serial immobilized pH gradient gels. J Proteome Res 4:2117–2125

    Article  PubMed  CAS  Google Scholar 

  19. Schrattenholz A, Groebe K (2007) What does it need to be a biomarker? Relationships between resolution, differential quantification and statistical validation of protein surrogate biomarkers. Electrophoresis 28(12):1970–1979

    Article  PubMed  CAS  Google Scholar 

  20. Soskic V, Groebe K, Schrattenholz A (2008) Nonenzymatic posttranslational protein modifications in ageing. Exp Gerontol 43(4):247–257

    Article  PubMed  CAS  Google Scholar 

  21. Köllermann J, Schlomm T, Bang H, et al. (2008) Expression and prognostic relevance of Annexin A3 in prostate cancer. Eur Urol 16: (Epub ahead of print)

  22. Schostak M, Schwall GP, Poznanović P, et al. (2008) Annexin A3 in urine – a highly specific non invasive marker in prostate cancer early detection. J Urology (in press)

  23. Amaro AR, Oakley GG, Bauer U, et al. (1996) Metabolic activation of PCBs to quinones: reactivity toward nitrogen and sulfur nucleophiles and influence of superoxide dismutase. Chem Res Toxicol 9:623–629

    Article  PubMed  CAS  Google Scholar 

  24. Schrattenholz A, Soskic V (2008) What does systems biology mean for drug development? Curr Top Med Chem (in press)

  25. Groebe K, Krause F, Kunstmann B, et al. (2007) Differential proteomic profiling of mitochondria from Podospora anserina, rat and human reveals distinct patterns of age-related oxidative changes. Exp.Gerontol 42:887–898

    Article  PubMed  CAS  Google Scholar 

  26. Balls M, Goldberg AM, Fentem JH, et al. (1995) The three Rs: the way forward: the report and recommendations of ECVAM Workshop 11. Altern Lab Anim 23:838–866

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Schrattenholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klemm, M., Groebe, K., Šoškić, V. et al. Stammzellbasierte In-vitro-Modelle als Ersatz für Tiermodelle bei Toxizitäts- und Wirksamkeitsprüfungen. Bundesgesundheitsbl. 51, 1033–1038 (2008). https://doi.org/10.1007/s00103-008-0632-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-008-0632-4

Schlüsselwörter

Keywords

Navigation