Skip to main content
Log in

Humane embryonale Stammzellen

Perspektiven für die Erforschung und Therapie neurologischer Erkrankungen

Human embryonic stem cells. Perspectives for the study and therapy of neurological disorders

  • Leitthema: Forschung mit humanen embryonalen Stammzellen
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Die außergewöhnliche Fähigkeit humaner embryonaler Stammzellen (hES-Zellen), in alle somatischen Zell- und Gewebetypen differenzieren zu können, eröffnet vielversprechende Möglichkeiten für die Entwicklung neuer Ansätze zur Behandlung neurologischer Erkrankungen. Der vorliegende Beitrag soll anhand ausgewählter Beispiele einen Überblick über den derzeitigen Stand der Forschung auf diesem Gebiet geben. Es werden Methoden und Ergebnisse zur Gewinnung ausgewählter neuraler Zelltypen (dopaminerge Neurone, Retinazellen, Motorneurone, Oligodendrozyten) aus hES-Zellen vorgestellt und mögliche Probleme und Risiken der Nutzung dieser neuen Zellquelle im klinischen Kontext diskutiert.

Abstract

The remarkable capability of human embryonic stem cells (hES cells) to differentiate into all somatic cell types and tissues opens promising perspectives for the development of novel therapeutic approaches for neurological disorders. This article provides an overview on the current state of research in this field. We present strategies and results on the generation of selected neural subtypes (dopaminergic neurons, retinal progenitors, motoneurons, oligodendrocytes) and discuss problems and risks associated with a potential clinical application of this novel cell source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Zhang SC, Wernig M, Duncan ID, et al. (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129–1133

    Article  PubMed  CAS  Google Scholar 

  2. Reubinoff BE, Itsykson P, Turetsky T, et al. (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134–1140

    Article  PubMed  CAS  Google Scholar 

  3. Perrier AL, Tabar V, Barberi T, et al. (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 101:12543–12548

    Article  PubMed  CAS  Google Scholar 

  4. Gerrard L, Rodgers L, Cui W (2005) Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling. Stem Cells 23:1234–1241

    Article  PubMed  CAS  Google Scholar 

  5. Benzing C, Segschneider M, Leinhaas A, et al. (2006) Neural conversion of human embryonic stem cell colonies in the presence of fibroblast growth factor-2. Neuroreport 17:1675–1681

    Article  PubMed  CAS  Google Scholar 

  6. Yan Y, Yang D, Zarnowska ED, et al. (2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23:781–790

    Article  PubMed  CAS  Google Scholar 

  7. Li XJ, Du ZW, Zarnowska ED, et al. (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23:215–221

    Article  PubMed  CAS  Google Scholar 

  8. Izrael M, Zhang P, Kaufman R, et al. (2007) Human oligodendrocytes derived from embryonic stem cells: Effect of Noggin on phenotypic differentiation in vitro and on myelination in vivo. Mol Cell Neurosci 34:310–323

    Article  PubMed  CAS  Google Scholar 

  9. Li XJ, Hu BY, Jones SA, et al. (2008) Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells DOI: 10.1634/stemcells.2007–0620

  10. Lee G, Kim H, Elkabetz Y, et al. (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 25:1468–1475

    Article  PubMed  CAS  Google Scholar 

  11. Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci USA 103:12769–12774

    Article  PubMed  CAS  Google Scholar 

  12. Ladewig J, Koch P, Endl E, et al. (2008) Lineage selection of functional and cryopreservable human embryonic stem cell-derived neurons. Stem Cells doi:10.1634/stemcells. 2008–0007

  13. Singh Roy N, Nakano T, Xuing L, et al. (2005) Enhancer-specified GFP-based FACS purification of human spinal motorneurons from embryonic stem cells. Exp Neurol 196:224–234

    Article  PubMed  CAS  Google Scholar 

  14. Pruszak J, Sonntag KC, Aung MH, et al. (2007) Markers and methods for cell sorting of human embryonic stem cell-derived cell populations. Stem Cells 25:2257–2268

    Article  PubMed  Google Scholar 

  15. Dunnett SB, Björklund A, Lindvall O (2001) Cell therapy in Parkinson’s disease – stop or go? Nat Rev Neurosci 2:365–369

    Article  PubMed  CAS  Google Scholar 

  16. Schulz TC, Noggle SA, Palmarini GM, et al. (2004) Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells 22:1218–1238

    Article  PubMed  CAS  Google Scholar 

  17. Roy NS, Cleren C, Singh SK, et al. (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12:1259–1268

    Article  PubMed  CAS  Google Scholar 

  18. Ko JY, Park CH, Koh HC, et al. (2007) Human embryonic stem cell-derived neural precursors as a continuous, stable and on-demand source for human dopamine neurons. J Neurochem 103:1417–1429

    Article  PubMed  CAS  Google Scholar 

  19. Yang D, Zhang ZJ, Oldenburg M, et al. (2008) Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 26:55–63

    Article  PubMed  CAS  Google Scholar 

  20. Cho MS, Lee YE, Kim JY, et al. (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 4:3392–3397

    Article  Google Scholar 

  21. Banin E, Obolensky A, Idelson M, et al. (2006) Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells. Stem Cells 24:246–257

    Article  PubMed  Google Scholar 

  22. Osakada F, Ikeda H, Mandai M, et al. (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26:215–224

    Article  PubMed  CAS  Google Scholar 

  23. Lee H, Shamy GA, Elkabetz Y, et al. (2007) Directed differentiation and transplantation of human embryonic stem cell-derived motorneurons. Stem Cells 25:1931–1939

    Article  PubMed  CAS  Google Scholar 

  24. Brüstle O, Jones KN, Learish RD, et al. (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–755

    Article  PubMed  Google Scholar 

  25. Nistor GI, Totoiu MO, Haque N, et al. (2005) Human embryonic stem cells differentiate into oligo-dendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49:385–396

    Article  PubMed  Google Scholar 

  26. Keirstead HS, Nistor G, Bernal G, et al. (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4697–4705

    Article  CAS  Google Scholar 

  27. Kang SM, Cho MS, Seo H, et al. (2007) Efficient induction of oligodendrocytes from human embryonic stem cells. Stem Cells 25:419–424

    Article  PubMed  CAS  Google Scholar 

  28. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  29. Draper JS, Smith K, Gokhale P, et al. (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54

    Article  PubMed  CAS  Google Scholar 

  30. Mitalipova MM, Rao RR, Hoyer DM, et al. (2005) Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol 23:19–20

    Article  PubMed  CAS  Google Scholar 

  31. Krystkowiak P, Gaura V, Labalette M, et al. (2007) Alloimmunisation to donor antigens and immune rejection following foetal neural grafts to the brain in patients with Huntington’s disease. PLoS ONE 2:e166

    Article  PubMed  CAS  Google Scholar 

  32. Taylor CJ, Bolton EM, Pocock S, et al. (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366:2019–2025

    Article  PubMed  Google Scholar 

  33. Nakajima F, Tokunaga K, Nakatsuji N (2007) Human leukocyte antigen matching estimations in a hypothetical bank of human embryonic stem cell lines in the Japanese population for use in cell transplantations. Stem Cells 25:983–985

    Article  PubMed  CAS  Google Scholar 

  34. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  35. Takahashi K, Tanabe K, Ohnuki M, et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  36. Yu J, Vodyanik MA, Smuga-Otto K, et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  37. Nakagawa M, Koyanagi M, Tanabe K, et al. (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    Article  PubMed  CAS  Google Scholar 

  38. Park IH, Zhao R, West JA, et al. (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    Article  PubMed  CAS  Google Scholar 

  39. Hanna J, Wernig M, Markoulaki S, et al. (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    Article  PubMed  CAS  Google Scholar 

  40. Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21:319–321

    Article  PubMed  CAS  Google Scholar 

  41. Urbach A, Schuldiner M, Benvenisty N (2004) Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22:635–641

    Article  PubMed  CAS  Google Scholar 

  42. Abe Y, Kouyama K, Tomita T, et al. (2003) Analysis of neurons created from wild-type and Alzheimer’s mutation knock-in embryonic stem cells by a highly efficient differentiation protocol. J Neurosci 23:8513–8525

    PubMed  CAS  Google Scholar 

  43. Verlinsky Y, Strelchenko N, Kukharenko V, et al. (2005) Human embryonic stem cell lines with genetic disorders. Reprod Biomed Online 10:105–110

    Article  PubMed  CAS  Google Scholar 

  44. Schmandt T, Goßrau G, Kischlat T, et al. (2006) Animal models for cell and gene therapy in myelin disease. Drug Discovery Today: Disease Models 3:349–358

    Article  Google Scholar 

  45. Guan K, Nayernia K, Maier LS, et al. (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203

    Article  PubMed  CAS  Google Scholar 

  46. Seandel M, James D, Shmelkov SV, et al. (2007) Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449:346–350

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Brüstle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolden, L., Brüstle, O. Humane embryonale Stammzellen. Bundesgesundheitsbl. 51, 1026–1032 (2008). https://doi.org/10.1007/s00103-008-0631-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-008-0631-5

Schlüsselwörter

Keywords

Navigation