Skip to main content
Log in

Von der Grundlagenforschung in die Klinik

Regulative Anforderungen an präklinische und klinische Studien mit Stammzellen

From basic research to the clinic. Regulations for preclinical and clinical studies with stem cells

  • Leitthema: Forschung mit humanen embryonalen Stammzellen
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Ende 1998 wurde mit der ersten Isolierung und Kultivierung humaner embryonaler Stammzellen (humane ES-Zellen) eine stürmische Entwicklung in der Stammzellforschung eingeleitet, die bis heute von kontroversen Diskussionen begleitet wird. Adulte Blutstammzellen werden hingegen schon lange therapeutisch eingesetzt. Zunächst nach ihrer Entdeckung 1963 in Einzelfällen, bis sie Anfang der 1980er-Jahre Anerkennung als Zelltherapeutikum fanden. Der Weg von der Grundlagenforschung in die Klinik hat hier rund 20 Jahre gedauert und wurde anfangs sehr kontrovers diskutiert. Das damalige regulatorische Umfeld ließ jedoch eine rasche Umsetzung der Ergebnisse aus der Grundlagenforschung in die Klinik zu. Inzwischen befinden sich neue Stammzelltherapien für die Behandlung einer Vielzahl von Krankheiten in der Entwicklung. Vor ihrer klinischen Realisierung ist aber ein langer Entwicklungsweg zu durchlaufen, der über das Arzneimittelgesetz (AMG) geregelt ist. Sowohl für die vorklinische Forschung als auch für den klinischen Einführungsprozess gelten spezifische Regularien, die eine strukturierte und sichere Einführung neuer therapeutischer Maßnahmen gewährleisten sollen. Zeitaufwand, Know-how und Kosten für die Planung, Beantragung und Durchführung der Studien sind nicht zu unterschätzen. Erst nach Prüfung durch die zuständige Behörde und Erteilung einer entsprechenden Genehmigung dürfen Stammzellprodukte in den Verkehr gebracht werden.

Abstract

The discovery of human embryonic stem cells at the end of 1998 had a strong influence on the development of stem cell research and led to controversial discussions. The first therapeutic application of adult blood stem cells began after their discovery in 1963 and was accepted as an authorized therapy in the early 1980s. The way from basic research to therapeutic use needed about 20 years and was also discussed in a controversial way similar to the discussions of today. The regulatory environment at that time, however, allowed a quick translation of the results from basic research to the clinic. Today many new stem cell therapies for a multitude of diseases are under development. Their clinical realization is regulated by the AMG (Arzneimittelgesetz). For nonclinical research as well as for clinical research, specific regulations are enacted to guarantee a structured and safe launch. Time, know how and money for planning, request for authorization and conduction of a clinical trial should not be underestimated. For clinical application of stem cell products authorization by the proper authorities is mandatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145

    Article  PubMed  CAS  Google Scholar 

  2. Siminovitch L, McCulloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J. Cell Comp Physiol 62:327

    Article  CAS  Google Scholar 

  3. Becker A, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452

    Article  PubMed  CAS  Google Scholar 

  4. Thomas ED, Flournoy N, Buckner CD, et al. (1977) Cure of leukemia by marrow transplantation. Leukemia Res 1:67

    Article  Google Scholar 

  5. Ho AD, Punzel M (2003) Hematopoietic stem cells: can old cells learn new tricks? Review, 112 refs. J Leukocyte Biol 73:547–555

    Article  PubMed  CAS  Google Scholar 

  6. Körbling M, Dörken B, Ho AD, et al. (1986) Autologous transplantation of blood-derived hemopoietic stem cells after myeloablative therapy in a patient with Burkitt’s lymphoma. Blood 67:529

    PubMed  Google Scholar 

  7. Lane TA, Law P, Maruyama M, et al. (1995) Harvesting and enrichment of hematopoietic progenitor cells mobilized into the peripheral blood of normal donors by granulocyte macrophage-colony stimulating factor (GM-CSF) or G-CSF: potential role in allogeneic marrow transplantation. Blood 85:275

    PubMed  CAS  Google Scholar 

  8. Ho AD, Wagner W (2006) Bone marrow niche and leukemia. Review, 48 refs. Ernst Schering Foundation Symposium Proceedings 5:125–139

    Article  PubMed  Google Scholar 

  9. Ho AD, Wagner W, Mahlknecht U (2005) Stem cells and ageing. The potential of stem cells to overcome age-related deteriorations of the body in regenerative medicine. EMBO Reports 6:S35–S38

    Article  PubMed  CAS  Google Scholar 

  10. Orlic D, Kajstura J, Chimenti S, et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705

    Article  PubMed  CAS  Google Scholar 

  11. Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451(7181):937–942

    Article  PubMed  CAS  Google Scholar 

  12. Hodgson DM, Behfar A, Zingman LV, et al. (2004) Stable benefit of embryonic stem cell therapy in myocardial infarction. Am J Physiol Heart Circ Physiol 287(2):H471–479

    Article  CAS  Google Scholar 

  13. Amado LC, Saliaris AP, Schuleri KH, et al. (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102(32):11474–11479

    Article  PubMed  CAS  Google Scholar 

  14. Breitbach M, Bostani T, Roell W, et al. (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110 (4):1362–1369

    Article  PubMed  CAS  Google Scholar 

  15. Vieyra DS, Jackson KA, Goodell MA (2005) Plasticity and tissue regenerative potential of bone marrow-derived cells. Stem Cell Rev 1(1):65–69

    Article  PubMed  Google Scholar 

  16. Ma N, Ladilov Y, Moebius JM, et al. (2006) Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: bone marrow vs. cord blood-derived cells. Cardiovasc Res 71(1):158–169

    Article  PubMed  CAS  Google Scholar 

  17. Ayach BB, Yoshimitsu M, Dawood F, et al. (2006) Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction. Proc Natl Acad Sci USA 103(7):2304–2309

    Article  PubMed  CAS  Google Scholar 

  18. Stamm C, Westphal B, Kleine HD, et al. (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361(9351):45–46

    Article  PubMed  Google Scholar 

  19. Strauer BE, Brehm M, Zeus T, et al. (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Cirulation 106(15):1913–1918

    Article  Google Scholar 

  20. Perin EC, Dohmann HF, Borojevic R, et al. (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107(18):2294–2302

    Article  PubMed  Google Scholar 

  21. Assmus B, Schächinger V, Teupe C, et al. (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106(24):3009–3017

    Article  PubMed  Google Scholar 

  22. Schächinger V, Erbs S, Elsässer A, et al. (2006) Repair AMI Investigators. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPARI-AMI trial. Eur Heart J 27(23):2775–2783

    Article  PubMed  Google Scholar 

  23. Wollert KC, Meyer GP, Lotz J, et al. (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429):141–148

    Article  PubMed  Google Scholar 

  24. Tse HF, Thambar S, Kwong YL, et al. (2007) Comparative evaluation of long-term clinical efficacy with catheter-based percutaneous intramyocardial autologous bone marrow cell implantation versus laser myocardial revascularization in patients with severe coronary artery disease. Am Heart J 154(5):982.e1–986

    Article  Google Scholar 

  25. Stamm C, Kleine HD, Choi YH, et al. (2007) Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg 133(3):717–725

    Article  PubMed  Google Scholar 

  26. Lunde K, Solheim S, Aakhus S, et al. (2007) Exercise capacity and quality of life after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: results from the Autologous Stem cell Transplantation in Acute Myocardial Infarction (ASTAMI) randomized controlled trial. Am Heart J 154(4):710.e1–718

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustav Steinhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinhoff, G., Tiedemann, G., Thalheimer, M. et al. Von der Grundlagenforschung in die Klinik. Bundesgesundheitsbl. 51, 973–979 (2008). https://doi.org/10.1007/s00103-008-0624-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-008-0624-4

Schlüsselwörter

Keywords

Navigation