Skip to main content

Advertisement

Log in

The future of epidemiology

Methodological challenges and multilevel inference

Die Zukunft der Epidemiologie

Methodische Herausforderungen und Multilevel-Interferenz

  • Leitthema: Berliner Gespräche zur Sozialmedizin: The future of epidemiology
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

An Erratum to this article was published on 01 November 2006

Abstract

A decade ago there was considerable debate about the appropriate objectives and paradigms of modern epidemiologic research. One concern put forth in these debates was that “risk factor epidemiology” might be forcing our field to focus more on individuals and less on populations and public health. Today, most epidemiologists acknowledge that public health is influenced by both population-level and individual-level determinants. Ecologic studies are valuable tools for generating hypotheses and addressing group-level determinants of disease risk. Traditional risk factor studies and genomic studies have helped establish the multifactorial concept of disease causation. Individual-level studies also have provided the biomedical community with hypotheses that have stimulated research into disease mechanisms that have led to reductions in morbidity and mortality for diseases such as HIV/AIDS, cardiovascular disease, and cancer. Current debates about the role of genomic data in epidemiology and public health mirror the debates about risk factor epidemiology one decade ago. Genomic variation is measured at the individual level, but how this variation is maintained in human populations is a group-level (population) phenomenon that is worthy of epidemiologic investigation in its own right. Multilevel epidemiology seeks to understand multiple levels of inference, from genes to individuals to populations and could combine hypothesis-driven research with aspects of data mining. Multilevel epidemiology calls for the study of health and disease determinants defined at the population level and individual level for a more comprehensive strategy to understanding human disease etiology. With the continued development of multilevel statistical methods and the advent of data mining, the technical constraints of the past will become less relevant to the next generation of epidemiologists who wish to embrace a more multilevel epidemiology.

Zusammenfassung

Vor 10 Jahren gab es eine beachtliche Diskussion über die Ziele und Paradigmen moderner epidemiologischer Forschung. Eine in diesen Diskussionen vorgebrachte Sorge war, dass die „Risikofaktor-Epidemiologie“ unser Fachgebiet zwingen könnte, den Schwerpunkt mehr auf Einzelpersonen und weniger auf Populationen und die öffentliche Gesundheit zu legen. Heutzutage erkennen die meisten Epidemiologen an, dass die öffentliche Gesundheit von Determinanten sowohl auf Populations- als auch auf Individualebene beeinflusst wird. Ökologische Studien sind wertvolle Instrumente, um Hypothesen aufzustellen und sich mit Determinanten des Krankheitsrisikos auf Gruppenebene zu befassen. Herkömmliche Untersuchungen zu Risikofaktoren und genetische Studien haben dazu beigetragen, das multifaktorielle Konzept der Verursachung von Krankheiten zu etablieren. Auch durch Studien auf Individualebene entstanden in der Biomedizin Hypothesen, die die Erforschung von Krankheitsmechanismen gefördert haben, was wiederum zu einer Verminderung der Morbidität und Mortalität von Krankheiten wie HIV/Aids, Herz-Kreislauf-Krankheiten und Krebs geführt hat. Die aktuellen Diskussionen über die Rolle genetischer Daten in der Epidemiologie und im öffentlichen Gesundheitswesen spiegelt die Diskussionen über die Risikofaktor-Epidemiologie vor 10 Jahren. Die genetische Variation wird auf der Individualebene erfasst, aber wie diese Variation in der menschlichen Population erhalten wird, das ist ein Phänomen auf Gruppenebene (Population), das allein schon eine epidemiologische Untersuchung lohnt. Ziel der Mehrebenen-Epidemiologie ist das Verständnis mehrerer Ebenen von Inferenzen, von den Genen über Einzelpersonen bis hin zu Populationen. Dabei könnte hypothesenbasierte Forschung mit Aspekten der gezielten Datensuche kombiniert werden. Die Mehrebenen-Epidemiologie erfordert für eine umfassendere Strategie zum Verständnis der Ätiologie menschlicher Krankheiten die Untersuchung von Gesundheits- und Krankheitsdeterminanten, die auf Populations- und Individualebene definiert sind. Mit der fortgesetzten Entwicklung statistischer Mehrebenen-Analysen und dem Aufkommen des Data Mining werden die technischen Einschränkungen der Vergangenheit für die nächste Generation von Epidemiologen weniger relevant sein. Sie werden sich eine mehr auf den Mehrebenen-Ansatz ausgerichtete Epidemiologie zu Eigen machen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krieger N (1994) Epidemiology and the web of causation: has anyone seen the spider? Soc Sci Med 39(7): 887–903

    Article  PubMed  Google Scholar 

  2. Savitz DA (1994) In defense of black box epidemiology. Epidemiology 5(5): 550–552

    PubMed  Google Scholar 

  3. Susser M, Susser E (1996) Choosing a future for epidemiology: I. Eras and paradigms. Am J Public Health 86(5): 668–673

    PubMed  Google Scholar 

  4. Susser M, Susser E (1996) Choosing a future for epidemiology: II. From black box to Chinese boxes and eco-epidemiology. Am J Public Health 86(5): 674–677

    PubMed  Google Scholar 

  5. Rose G (1985) Sick individuals and sick populations. Int J Epidemiol 14(1): 32–38

    PubMed  Google Scholar 

  6. Savitz DA, Poole C, Miller WC (1999) Reassessing the role of epidemiology in public health. Am J Public Health 89(8): 1158–1161

    PubMed  Google Scholar 

  7. Morgenstern H (1995) Ecologic studies in epidemiology: concepts, principles, and methods. Annu Rev Public Health 16: 61–81

    Article  PubMed  Google Scholar 

  8. Breeze E, Jones DA, Wilkinson P et al. (2005) Area deprivation, social class, and quality of life among people aged 75 years and over in Britain. Int J Epidemiol 34(2): 276–283

    Article  PubMed  Google Scholar 

  9. Huynh M, Parker JD, Harper S et al. (2005) Contextual effect of income inequality on birth outcomes. Int J Epidemiol 34(4): 888–895

    Article  PubMed  Google Scholar 

  10. Austin SB, Melly SJ, Sanchez BN et al. (2005) Clustering of fast-food restaurants around schools: a novel application of spatial statistics to the study of food environments. Am J Public Health 95(9): 1575–1581

    Article  PubMed  Google Scholar 

  11. Dreassi E (2003) A space-time analysis of the relationship between material deprivation and mortality for lung cancer. Environmetrics 14: 511–521

    Article  Google Scholar 

  12. Krieger N (2003) Place, space, and health: GIS and epidemiology. Epidemiology 14(4): 384–385

    PubMed  Google Scholar 

  13. Ricketts TC (2003) Geographic information systems and public health. Annu Rev Public Health 24: 1–6

    Article  PubMed  Google Scholar 

  14. Rushton G (2003) Public health, GIS, and spatial analytic tools. Annu Rev Public Health 24: 43–56

    Article  PubMed  Google Scholar 

  15. Kristal AR, Peters U, Potter JD (2005) Is it time to abandon the food frequency questionnaire? Cancer Epidemiol Biomarkers Prev 14(12): 2826–2828

    Article  PubMed  Google Scholar 

  16. Millikan R (2002) The changing face of epidemiology in the genomics era. Epidemiology 13(4): 472–480

    Article  PubMed  Google Scholar 

  17. Khoury MJ, Davis R, Gwinn M et al. (2005) Do we need genomic research for the prevention of common diseases with environmental causes? Am J Epidemiol 161(9): 799–805

    Article  PubMed  Google Scholar 

  18. Merikangas KR, Risch N (2003) Genomic priorities and public health. Science 302(5645): 599–601

    Article  PubMed  Google Scholar 

  19. Hunter DJ (2005) Gene-environment interactions in human diseases. Nat Rev Genet 6(4): 287–298

    Article  PubMed  Google Scholar 

  20. Slamon DJ, Leyland-Jones B, Shak S et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11): 783–792

    Article  PubMed  Google Scholar 

  21. Shigematsu H, Lin L, Takahashi T et al. (2005) Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 97(5): 339–346

    PubMed  Google Scholar 

  22. Rockhill B (2005) Theorizing about causes at the individual level while estimating effects at the population level: implications for prevention. Epidemiology 16(1): 124–129

    Article  PubMed  Google Scholar 

  23. The International HapMap Project (2003) Nature 426(6968): 789–796

    Article  PubMed  Google Scholar 

  24. Wittke-Thompson JK, Pluzhnikov A, Cox NJ (2005) Rational inferences about departures from Hardy-Weinberg equilibrium. Am J Hum Genet 76(6): 967–986

    Article  PubMed  Google Scholar 

  25. Wacholder S, Rothman N, Caporaso N (2000) Population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. J Natl Cancer Inst 92(14): 1151–1158

    Article  PubMed  Google Scholar 

  26. Helgason A, Yngvadottir B, Hrafnkelsson B et al. (2005) An Icelandic example of the impact of population structure on association studies. Nat Genet 37(1): 90–95

    PubMed  Google Scholar 

  27. Campbell CD, Ogburn EL, Lunetta KL et al. (2005) Demonstrating stratification in a European American population. Nat Genet 37(8): 868–872

    Article  PubMed  Google Scholar 

  28. Thomas DC (2000) Genetic epidemiology with a capital “E”. Genet Epidemiol 19(4): 289–300

    Article  PubMed  Google Scholar 

  29. Ritchie MD, Hahn LW, Roodi N et al. (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69(1): 138–147

    Article  PubMed  Google Scholar 

  30. Moore JH (2004) Computational analysis of gene-gene interactions using multifactor dimensionality reduction. Expert Rev Mol Diagn 4(6): 795–803

    Article  PubMed  Google Scholar 

  31. Nelson MR, Kardia SL, Ferrell RE, Sing CF (2001) A combinatorial partitioning method to identify multilocus genotypic partitions that predict quantitative trait variation. Genome Res 11(3): 458–470

    Article  PubMed  Google Scholar 

  32. Moore JH, Ritchie MD (2004) STUDENTJAMA. The challenges of whole-genome approaches to common diseases. Jama 291(13): 1642–1643

    Article  PubMed  Google Scholar 

  33. Neale BM, Sham PC (2004) The future of association studies: gene-based analysis and replication. Am J Hum Genet 75(3): 353–362

    Article  PubMed  Google Scholar 

  34. Nothnagel M, Rohde K (2005) The effect of single-nucleotide polymorphism marker selection on patterns of haplotype blocks and haplotype frequency estimates. Am J Hum Genet 77(6): 988–998

    Article  PubMed  Google Scholar 

  35. Lyko F, Brown R (2005) DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 97(20): 1498–1506

    PubMed  Google Scholar 

  36. Loomis D, Wing S (1990) Is molecular epidemiology a germ theory for the end of the twentieth century? Int J Epidemiol 19(1): 1–3

    PubMed  Google Scholar 

  37. Schwartz S, Susser E, Susser M (1999) A future for epidemiology? Annu Rev Public Health 20: 15–33

    Article  PubMed  Google Scholar 

  38. Diez-Roux AV (2000) Multilevel analysis in public health research. Annu Rev Public Health 21: 171–192

    Article  PubMed  Google Scholar 

  39. Jha P, Chaloupka FJ (2000) The economics of global tobacco control. Bmj 321(7257): 358–361

    Article  PubMed  Google Scholar 

  40. Zielinski SL (2005) Diversity in cancer rates, control programs matches diversity of European Union. J Natl Cancer Inst 97(19): 1398–1399

    PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Jason Moore and an anonymous reviewer for helpful comments on earlier versions of the manuscript. Dr. Duell was supported by NIH grant number 1 P20 RR018787 from the Institutional Development Award (IDeA) Program of the National Center for Research Resources and by NIH grant number CA98889 (to E.Duell).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Duell.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00103-006-0083-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duell, E.J. The future of epidemiology. Bundesgesundheitsbl. 49, 622–627 (2006). https://doi.org/10.1007/s00103-006-1293-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-006-1293-9

Keywords

Schlüsselwörter

Navigation