Skip to main content
Log in

Nutrigenomik

Grundlagen, Stand der Forschung, Anwendungen

Nutrigenomics. Scientific basis, status and perspectives of application

  • Leitthema: Genetik und Gesundheitsforschung, Teil 1: Grundlagen
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Nutrigenomik ist eine neue Forschungsrichtung, die die Wechselwirkung zwischen der Ernährung und dem Genom untersucht und damit Ernährungswissenschaft und funktionelle Genomik zusammenführt. Ziel der Nutrigenomik ist es, (1) heterogene Effekte von Nährstoffen auf Sequenz variationen im Genom zurückzuführen sowie (2) durch Einsatz neuer Untersuchungstechniken die Wirkungen von Nahrungsinhaltsstoffen auf die Expression des gesamten Genoms (mRNA profiling) und auf Metabolitenmuster (metabolite profiling) zu untersuchen. Hierdurch werden wichtige Erkenntnisse zur Funktion von Lebensmittelinhaltsstoffen sowie zur funktionellen Konsequenz genetischer Varianz gewonnen. Diese werden eine verbesserte Prävention ernährungsbedingter Erkrankungen, z. B. durch eine personalisierte Ernährung, ermöglichen.

Abstract

Nutrigenomics investigates the interaction between nutrition and the genome, thereby combining nutritional research with functional genomics. Its aims are (1) to correlate heterogeneous effects of nutrients with sequence variations in the genome and (2) to investigate the effects of nutrients and other food components on gene expression at a genome-wide scale (mRNA profiling), and on patterns of metabolite alterations in serum (metabolite profiling). The field will provide important information as to the biological effects of food components, and to the functional consequences of genetic variance. This information will improve the prevention of nutrition-related diseases, e. g. by establishing personalised nutritional recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Kaput J, Rodriguez RL (2004) Nutritional genomics: the next frontier in the postgenomic era. Physiol Genomics 16:166–177

    PubMed  CAS  Google Scholar 

  2. Ordovas JM, Corella D (2004) Nutritional genomics. Annu Rev Genomics Hum Genet 5:71–118

    Article  PubMed  CAS  Google Scholar 

  3. van Ommen B, Stierum R (2002) Nutrigenomics: exploiting systems biology in the nutrition and health arena. Curr Opin Biotechnol 13:517–521

    Article  PubMed  CAS  Google Scholar 

  4. German JB, Bauman DE, Burrin DG et al. (2004) Metabolomics in the opening decade of the 21st century: building the roads to individualized health. J Nutr 134:2729–2732

    PubMed  CAS  Google Scholar 

  5. Enattah NS, Sahi T, Savilahti E et al. (2002) Identification of a variant associated with adult-type hypolactasia. Nat Genet 30:233–237

    Article  PubMed  CAS  Google Scholar 

  6. Austin MA, Hutter CM, Zimmern RL, Humphries SE (2004) Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol 160:407–420

    Article  PubMed  Google Scholar 

  7. Levy HL (1999) Phenylketonuria: old disease, new approach to treatment. Proc Natl Acad Sci 96:1811–1813

    Article  PubMed  CAS  Google Scholar 

  8. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61

    Article  PubMed  CAS  Google Scholar 

  9. Schulze MB, Hu FB (2005) Primary prevention of diabetes: what can be done and how much can be prevented? Annu Rev Public Health 26:445–467

    Article  PubMed  Google Scholar 

  10. Cortese C, Motti C (2001) MTHFR gene polymorphism, homocysteine and cardiovascular disease. Public Health Nutr 4:493–497

    Article  PubMed  CAS  Google Scholar 

  11. Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2:91–99

    Article  PubMed  CAS  Google Scholar 

  12. Rebbeck TR, Spitz M, Wu X (2004) Assessing the function of genetic variants in candidate gene association studies. Nat Rev Genet 5:589–597

    Article  PubMed  CAS  Google Scholar 

  13. Stevenson C, Barroso I, Wareham N (2006) The genetics of type-2 diabetes. In: Brigelius-Flohé R, Joost HG (eds) Nutritional genomics, Wiley-VCH, Weinheim, pp 223–265

  14. Colditz GA, Willett WC, Rotnitzky A, Manson JE (1995) Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med 122:481–486

    PubMed  CAS  Google Scholar 

  15. Heidemann C, Hoffmann K, Spranger J et al. (2005) A dietary pattern protective against type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study cohort. Diabetologia 48:1126–1134

    Article  PubMed  CAS  Google Scholar 

  16. Tuomilehto J, Lindstrom J, Eriksson JG et al. (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350

    Article  PubMed  CAS  Google Scholar 

  17. Chiasson JL, Josse RG, Gomis R et al; STOP-NIDDM Trial Research Group (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359:2072–2077

    Article  PubMed  CAS  Google Scholar 

  18. Knowler WC, Barrett-Connor E, Fowler SE et al. (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403

    Article  PubMed  CAS  Google Scholar 

  19. Strain JJ, Dowey L, Ward M et al. (2004) B-vitamins, homocysteine metabolism and CVD. Proc Nutr Soc 63:597–603

    Article  PubMed  CAS  Google Scholar 

  20. Ueland PM, Refsum H, Beresford SA, Vollset SE (2000) The controversy over homocysteine and cardiovascular risk. Am J Clin Nutr 72:324–332

    PubMed  CAS  Google Scholar 

  21. Sharp L, Little J (2004) Polymorphisms in folate metabolism and colorectal neoplasia: a HuGE review. Am J Epidemiol 159:423–443

    Article  PubMed  Google Scholar 

  22. Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H (2006) Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 295:1135–1141

    Article  PubMed  CAS  Google Scholar 

  23. White S, Brooks E, Jurikova L, Stubbs RS (2005) Long-term outcomes after gastric bypass. Obes Surg 15:155–163

    Article  PubMed  Google Scholar 

  24. Poch E, Gonzalez D, Giner V et al. (2001) Molecular basis of salt sensitivity in human hypertension. Evaluation of renin-angiotensin-aldosterone system gene polymorphisms. Hypertension 38:1204–1209

    PubMed  CAS  Google Scholar 

  25. Ferrari P, Lovati E, Frey FJ (2000) The role of the 11beta-hydroxysteroid dehydrogenase type 2 in human hypertension. J Hypertens 18:241-248

    Article  PubMed  CAS  Google Scholar 

  26. Ferrari P, Sansonnens A, Dick B, Frey FJ (2001) In vivo 11-beta-HSD-2-activity: Variability, salt-sensitivity, and effect of licorice. Hypertension 38:1330–1336

    PubMed  CAS  Google Scholar 

  27. Knoblauch H, Bauerfeind A, Toliat MR et al. (2004) Haplotypes and SNPs in 13 lipid-relevant genes explain most of the genetic variance in highdensity lipoprotein and low-density lipoprotein cholesterol. Hum Mol Genet 13:993–1004

    Article  PubMed  CAS  Google Scholar 

  28. Hopkins PN (2003) Familial hypercholesterolemiaimproving treatment and meeting guidelines. Int J Cardiol 89:13–23

    Article  PubMed  Google Scholar 

  29. Poustie VJ, Rutherford P (2001) Dietary treatment for familial hypercholesterolaemia. Cochrane Database Syst Rev 2: CD001918

    PubMed  Google Scholar 

  30. Loktionov A, Scollen S, McKeown N, Bingham SA (2000) Gene-nutrient interactions: dietary behaviour associated with high coronary heart disease risk particularly affects serum LDL cholesterol in apolipoprotein E epsilon4-carrying free-living individuals. Br J Nutr 84:885–890

    PubMed  CAS  Google Scholar 

  31. Ordovas JM (2004) The quest for cardiovascular health in the genomic era: nutrigenetics and plasma lipoproteins. Proc Nutr Soc 63:145–152

    Article  PubMed  CAS  Google Scholar 

  32. Deitz AC, Zheng W, Leff MA et al. (2000) N-Acetyltransferase-2 genetic polymorphism, well-done meat intake, and breast cancer risk among postmenopausal women. Cancer Epidemiol Biomarkers Prev 9:905–910

    PubMed  CAS  Google Scholar 

  33. Seow A, Yuan JM, Sun CL et al. (2002) Dietary isothiocyanates, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study. Carcinogenesis 23:2055–2061

    Article  PubMed  CAS  Google Scholar 

  34. Joseph MA, Moysich KB, Freudenheim JL et al. (2004) Cruciferous vegetables, genetic polymorphisms in glutathione S-transferases M1 and T1, and prostate cancer risk. Nutr Cancer 50:206–213

    Article  PubMed  CAS  Google Scholar 

  35. Ambrosone CB, Freudenheim JL, Thompson PA, et al. (1999) Manganese superoxide dis mutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res 59:602–606

    PubMed  CAS  Google Scholar 

  36. Cai Q, Shu XO, Wen W et al. (2004) Genetic polymorphism in the manganese superoxide dismutase gene, antioxidant intake, and breast cancer risk: results from the Shanghai Breast Cancer Study. Breast Cancer Res 6:R647–655

    Article  PubMed  CAS  Google Scholar 

  37. Kaput J, Ordovas JM, Ferguson L et al. (2005) The case for strategic international alliances to harness nutritional genomics for public and personal health. Br J Nutr 94:623–632

    Article  PubMed  CAS  Google Scholar 

  38. http://www.mycellf.com/nutrigenetictesting.html; http://www.salugen.com/; http://www.genelex.com/

  39. Haga SB, Khoury MJ, Burke W (2003) Genomic profiling to promote a healthy lifestyle: not ready for prime time. Nat Genet 34:347–350

    Article  PubMed  CAS  Google Scholar 

  40. Joost, HG (2005) Genotyp-basierte Ernährungsempfehlungen: Noch im experimentellen Stadium. Dtsch Ärztebl 102:A2608

    Google Scholar 

  41. Hinds DA, Stuve LL, Nilsen GB et al. (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307:1072–1079

    Article  PubMed  CAS  Google Scholar 

  42. Matsuzaki H, Dong S, Loi H et al. (2004) Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nature Methods 1:109–111

    Article  PubMed  CAS  Google Scholar 

  43. Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405:827–836

    Article  PubMed  CAS  Google Scholar 

  44. Davis CD, Milner J (2004) Frontiers in nutrigenomics, proteomics, metabolomics and cancer prevention. Mutat Res 551:51–64

    PubMed  CAS  Google Scholar 

  45. Gibney MJ, Walsh M, Brennan L et al. (2005) Metabolomics in human nutrition: opportunities and challenges. Am J Clin Nutr 82:497–503

    PubMed  CAS  Google Scholar 

  46. Calle EE, Thun MJ (2004) Obesity and cancer. Oncogene 23:6365–6378

    Article  PubMed  CAS  Google Scholar 

  47. Finch CE, Ruvkun G (2001) The genetics of aging. Annu Rev Genomics Hum Genet 2:435–462

    Article  PubMed  CAS  Google Scholar 

  48. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    Article  PubMed  CAS  Google Scholar 

  49. Reifsnyder PC, Churchill G, Leiter EH (2000) Maternal environment and genotype interact to establish diabesity in mice. Genome Res 10:1568–1578

    Article  PubMed  CAS  Google Scholar 

  50. Arenz S, Ruckerl R, Koletzko B, von Kries R (2004) Breast-feeding and childhood obesity-a systematic review. Int J Obes Relat Metab Disord 28:1247–1256

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-G. Joost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joost, HG. Nutrigenomik. Bundesgesundheitsbl. 49, 1011–1019 (2006). https://doi.org/10.1007/s00103-006-0047-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-006-0047-z

Schlüsselwörter

Keywords

Navigation