Skip to main content

Advertisement

Log in

Toxikogenetik und Toxikogenomik

Bedeutung und Anwendung in der Arbeitsmedizin

Toxicogenetics and toxicogenomics. Relevance and application in occupational health

  • Leitthema: Genetik und Gesundheitsforschung, Teil 1: Grundlagen
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Fremdstoff-metabolisierende Enzyme sind in der Lage, die meisten organischen Substanzen (Industriechemikalien) zu wasserlöslichen Metaboliten umzusetzen. Sequenzvariationen in diesen Enzymen können daher erhebliche interindividuelle Unterschiede in der Metabolisierungskapazität zur Folge haben. Es werden relevante Sequenzvariationen der Phase I (Cytochrome P450) und der Phase II (Glutathion S-Transferasen, N-Acetyltransferasen, Sulfotransferasen, UDP-Glucuronosyltransferasen) dargestellt und die arbeitsmedizinische Bedeutung diskutiert. Als Instrument für eine individuelle Risikoabschätzung in der betrieblichen Praxis ist eine Bestimmung der verschiedenen Sequenzvariationen derzeit nicht geeignet.

Abstract

Xenobiotic metabolising enzymes modify most organic compounds into water soluble compounds. Sequence variations of these enzymes can lead to significant interindividual differences in the metabolism of xenobiotics. This review covers important sequence variations of phase I (cytochrome P450) and phase II (glutathion S-transferases, N-acetyltransferases, sulfotransferases, UDP-glucuronosyl transferases) enzymes and elucidates the significance for occupational health. At the present time, the determination of various sequence variations is not suitable for an individual risk assessment in occupational health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Nebert DW (1997) Polymorphisms in drug-metabolizing enzymes: What is their clinical relevance and why do they exist? Am J Hum Genet 60:265–271

    PubMed  CAS  Google Scholar 

  2. Schulz T, Hallier E (1999) Die Bedeutung von genetischen Polymorphismen Fremdstoff-metabolisierender Enzyme in der Arbeitsmedizin. Arbeitsmed Sozialmed Umweltmed 34:307–314

    Google Scholar 

  3. Conney AH (1986) Induction of microsomal cytochrome P-450 enzymes: the first Bernard B. Brodie lecture at Pennsylvania State University. Life Sci 39:2493–2518

    Article  PubMed  CAS  Google Scholar 

  4. Hayes JD, Pulford DJ (1995) The glutathione Stransferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30:445–600

    PubMed  CAS  Google Scholar 

  5. Wrighton SA, Stevens JC (1992) The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 22:1–21

    PubMed  CAS  Google Scholar 

  6. Hakkola J, Pelkonen O, Pasanen M, Raunio H (1998) Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: role in intrauterine toxicity. Crit Rev Toxicol 28:35–72

    Article  PubMed  CAS  Google Scholar 

  7. Ding X, Kaminsky LS (2003) Human extrahepatic cytochromes P450: Function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Ann Rev Pharmacol Toxicol 43:149–173

    Article  CAS  Google Scholar 

  8. Houlston RS (2000) CYP1A1 polymorphisms and lung cancer risk: a meta-analysis. Pharmacogenetics 10:105–114

    Article  PubMed  CAS  Google Scholar 

  9. Landi MT, Sinha R, Lang NP, Kadlubar FF (1999) Human cytochrome P4501A2. IARC Sci Publ 148:173–195

    PubMed  CAS  Google Scholar 

  10. Murray GI, Melvin WT, Greenlee WF, Burke MD (2001) Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1. Ann Rev Pharmacol Toxicol 41:297–316

    Article  CAS  Google Scholar 

  11. Thier R, Brüning T, Roos PH, Bolt HM (2002) Cytochrome P450 1B1, a new keystone in gene-environment interactions related to human head and neck cancer? Arch Toxicol 76:249–256

    Article  PubMed  CAS  Google Scholar 

  12. Oscarson M (2001) Genetic polymorphisms in the cytochrome P450 2A6 (CYP2A6) gene: implications for interindividual differences in nicotine metabolism. Drug Metab Dispos 29:91–95

    PubMed  CAS  Google Scholar 

  13. Pianezza ML, Sellers EM, Tyndale RF (1998) Nicotine metabolism defect reduces smoking. Nature 393:750

    Article  PubMed  CAS  Google Scholar 

  14. Schulz TG, Ruhnau P, Hallier E (2001) Lack of correlation between CYP2A6 genotype and smoking habits. Adv Exp Med Biol 500:213–215

    PubMed  CAS  Google Scholar 

  15. Yang CS, Yoo JSH, Ishizaki H, Hong JY (1990) Cytochrome P450IIE1—roles in nitrosamine metabolism and mechanisms of regulation. Drug Metab Rev 22:147–159

    PubMed  CAS  Google Scholar 

  16. Ryan DE, Ramanathan L, Iida S et al. (1985) Characterization of a major form of rat hepatic microsomal cytochrome P-450 induced by isoniazid. J Biol Chem 260:6385–6393

    PubMed  CAS  Google Scholar 

  17. Dekant W, Koob M, Henschler D (1990) Metabolism of trichloroethene – in vivo and in vitro evidence for activation by glutathione conjugation. Chem Biol Interact 73:89–101

    Article  PubMed  CAS  Google Scholar 

  18. Tetlow N, Liu D, Board P (2001) Polymorphism of human Alpha class glutathione transferases. Pharmacogenetics 11:609–617

    Article  PubMed  CAS  Google Scholar 

  19. Seidegard J, Vorachek WR, Pero RW, Pearson WR (1988) Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci USA 85:7293–7297

    Article  PubMed  CAS  Google Scholar 

  20. Inskip A, Elexperu-Camiruaga J, Buxton N et al. (1995) Identification of polymorphism at the glutathione S-transferase, GSTM3 locus: evidence for linkage with GSTM1*A. Biochem J 312:713–716

    PubMed  CAS  Google Scholar 

  21. Henderson CJ, McLaren AW, Moffat GJ et al. (1998) Pi-class glutathione S-transferase: regulation and function. Chem Biol Interact 111–112:69–82

    Article  PubMed  Google Scholar 

  22. Pemble SE, Schroeder KR, Spencer SR et al. (1994) Human glutathione S-transferase Theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 300:271–275

    PubMed  CAS  Google Scholar 

  23. Menegon A, Board PG, Blackburn AC et al. (1998) Parkinson‘s disease, pesticides, and glutathione transferase polymorphisms. Lancet 352:1344–1346

    Article  PubMed  CAS  Google Scholar 

  24. Sherrat PJ, Hayes JD (2002) Glutathione S-transferases. In: Ioannides C (Ed.) Enzyme Systems that metabolise drugs and other xenobiotics. Wiley, New York, Weinheim, pp 319-352

  25. Engel LS, Taioli E, Pfeiffer R, et al. (2002) Pooled analysis and meta-analysis of glutathione S-transferase M1 and bladder cancer: a HuGE review. Am J Epidemiol 156:95–109

    Article  PubMed  Google Scholar 

  26. Ramachandran S, Hoban PR, Ichii-Jones F et al. (2000) Glutathione S-transferase GSTP1 and cyclin D1 genotypes: association with numbers of basal cell carcinomas in a patient subgroup at high-risk of multiple tumours. Pharmacogenetics 10:545–556

    Article  PubMed  CAS  Google Scholar 

  27. Meyer DJ, Coles B, Pemble SE et al. (1991) Theta, a new class of glutathione transferases purified from rat and man. Biochem J 274:409–414

    PubMed  CAS  Google Scholar 

  28. Thier R, Wiebel FA, Hinkel A et al. (1998) Species differences in the glutathione transferase GSTT1-1 activity towards the model substrates methyl chloride and dichloromethane in liver and kidney. Arch Toxicol 72:622–629

    Article  PubMed  CAS  Google Scholar 

  29. Thier R, Pemble SE, Kramer H et al. (1996) Human glutathione S-transferase T1-1 enhances mutagenicity of 1,2-dibromoethane, dibromoethane and 1,2,3,4-diepoxybutane in Salmonella typhimurium. Carcinogen 17:163–166

    Article  CAS  Google Scholar 

  30. Garte S, Gaspari L, Alexandrie AK et al. (2001) Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 10:1239–1248

    PubMed  CAS  Google Scholar 

  31. Garnier R, Rambourg-Schepens MO, Müller A, Hallier E (1996) Glutathione transferase activity and formation of macromolecular adducts in two cases of acute methyl bromide poisoning. Occ Environm Med 53:211–215

    Article  CAS  Google Scholar 

  32. Levy GN, Weber WW (2002) Arylamine Acetyltransferases. In: Ioannides C (ed) Enzyme systems that metabolise drugs and other xenobiotics. Wiley, New York Weinheim, pp 441–457

  33. Landi S (2000) Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mut Res 463:247–283

    CAS  Google Scholar 

  34. Hein DW, Doll MA, Fretland AJ et al. (2000) Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 9:29–42

    PubMed  CAS  Google Scholar 

  35. Cartwright RA, Glashan RW, Rogers HJ et al. (1982) Role of N-actyltransferase phenotypes in bladder carcinogenesis: a pharmacogenetic epidemiological approach to bladder cancer. Lancet II:842–846

    Article  Google Scholar 

  36. Golka K, Prior V, Blaszkewicz M, Bolt HM (2002) The enhanced bladder cancer susceptibility of NAT2 slow acetylators towards aromatic amines: a review considering ethnic differences. Toxicol Lett 128:229–241

    Article  PubMed  CAS  Google Scholar 

  37. Marcus PM, Vineis P, Rothman N (2000) NAT2 slow acetylation and bladder cancer risk: a meta-analysis of 22 case-control studies conducted in the general population. Pharmacogenetics 10:115–122

    Article  PubMed  CAS  Google Scholar 

  38. Johns LE, Houlston RS (2000) N-acetyl transferase-2 and bladder cancer risk: a meta-analysis. Environ Mol Mutagen 36:221–227

    Article  PubMed  CAS  Google Scholar 

  39. Garcia-Closas M, Malats N, Silverman D et al. (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366:649–659

    Article  PubMed  CAS  Google Scholar 

  40. Gamage N, Barnett A, Hempel N et al. (2006) Human sulfotransferases and their role in chemical metabolism. Toxicol Sci 90:5–22

    Article  PubMed  CAS  Google Scholar 

  41. Glatt H (2002) Sulphotransferases. In: Ioannides C (ed) Enzyme systems that metabolise drugs and other xenobiotics. Wiley, New York Weinheim, pp 353–439

  42. Bock KW (2002) UDP-Glucuronosyltransferases. In: Ioannides C (ed) Enzyme systems that metabolise drugs and other xenobiotics. Wiley, New York Weinheim, pp 281–318

  43. Schulz T (2004) Xenobiotic metabolism/induction/inhibition. In: Angerer J, Müller M (eds) Analyses of hazardous substances in biological materials. Special issue: marker of susceptibility. Wiley-VCH, Weinheim, pp 11–22

    Google Scholar 

  44. Angerer J (2000) Biological Monitoring. Heutige und künftige Möglichkeiten in der Arbeits- und Umweltmedizin. Wiley-VCH, Weinheim

  45. Hallier E (2002) Genetische Disposition bei fremdstoffbedingten Erkrankungen. Dtsch Ärztebl 99:A112–A114

    Google Scholar 

  46. Rüdiger HW (2000) Konstitutionelle Unterschiede der Biotransformation organischer Lösungsmittel—Bedeutung für die Arbeitsmedizin. Arbeitsmed Sozialmed Umweltmed 35:205–209

    Google Scholar 

  47. Dorne JL, Walton K, Renwick AG (2005) Human variability in xenobiotic metabolism and pathwayrelated uncertainty factors for chemical risk assessment: a review. Food Chem Toxicol 43:203–216

    Article  PubMed  CAS  Google Scholar 

  48. Zinke E, Morun H (2000) Genetische Diagnostik und Arbeitsmedizin. Expertenanhörung der Enquete-Kommission „Recht und Ethik der modernen Medizin“ des Deutschen Bundestages, Themengruppe 3 (Genetische Daten) 4.12.2000. Berlin

  49. Borlak J (2005) Handbook of toxicogenomics. Wiley-VCH, Weinheim

  50. Toraason M, Albertini R, Bayard S et al. (2004) Applying new biotechnologies to the study of occupational cancer—a workshop summary. Environm Health Perspect 112:413–416

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schulz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, T. Toxikogenetik und Toxikogenomik. Bundesgesundheitsbl. 49, 1004–1010 (2006). https://doi.org/10.1007/s00103-006-0046-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-006-0046-0

Schlüsselwörter

Keywords

Navigation