Skip to main content

Advertisement

Log in

Stand der Pharmakogenetik in der klinischen Arzneimitteltherapie

State of the art of pharmacogenetic diagnostics in drug therapy

  • Leitthema: Genetik und Gesundheitsforschung, Teil 1: Grundlagen
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Individuelle Unterschiede in der Wirkung und Nebenwirkung von Medikamenten sind unter anderem durch individuelle Variationen in den genetischen Eigenschaften, d.h. durch genetische Polymorphismen, bedingt. Diese erblichen Polymorphismen finden sich sowohl in Genen, die für Enzyme des Arzneistoffmetabolismus und Arzneistofftransportes kodieren, als auch in Genen für die unterschiedlichsten direkten und indirekten Zielmoleküle von Medikamenten. Während genetische Varianten von Enzymen des Arzneistoffmetabolismus und Arzneimitteltransportes indirekt über die Pharmakokinetik (und damit Exposition der Gewebe) Auswirkungen auf die Effektivität einer Arzneitherapie haben, können Polymorphismen in den Zielmolekülen die Wirkstärke direkt beeinflussen und ein breites Spektrum an Folgen zeigen, das von einer Unwirksamkeit bis hin zu schweren überdosierungsbedingten Nebenwirkungen reichen kann. Allerdings ist unser Wissen über Varianten in Zielmolekülen von Medikamenten heute noch weniger fundiert als das über die Polymorphismen mit Einfluss auf die Pharmakokinetik. Ziel der pharmakogenetischen Diagnostik ist es, anhand molekulargenetischer Profile die individuelle Arzneimittelwirkung oder das Risiko für Nebenwirkungen besser vorhersagen zu können. Therapieempfehlungen können insbesondere bei Polymorphismen des Arzneistoffmetabolismus und -transportes in Form von Dosierungsanpassungen gegeben werden, die zu einem weniger variablen bzw. einem zuverlässigeren Plasmaspiegel und Konzentrationsverlauf von Medikamenten führen. Derzeit gibt es in Deutschland erst wenige Beispiele für die Anwendung genetischer Tests zur Verbesserung und Individualisierung der Arzneitherapie in der klinischen Praxis. Die Gründe hierfür sind vielfältig. Zum einen liegen diese im noch wenig verbreiteten Wissen über die Pharmakogenetik, zum anderen in der noch immer mangelnden schnellen und kostengünstigen Verfügbarkeit der entsprechenden Labortests. Von großer Bedeutung ist in diesem Zusammenhang aber wohl, dass die meisten Ergebnisse pharmakogenetischer Forschung bisher nicht in konkrete, therapeutisch verwertbare Schlussfolgerungen und Therapieempfehlungen gemündet sind. Damit ist in vielen Fällen die Testung auf einen Genotyp noch nicht sinnvoll. Die pharmakogenetische Forschung steht hier häufig erst an der Schwelle zur klinischen Anwendbarkeit. Für eine Reihe anderer arzneimitteltherapeutischer Maßnahmen, etwa vor einer Azathioprin-Therapie (Bestimmung der Thiopurin-Methyltransferase-Aktivität), vor einer 5-Fluorouracilbehandlung (Dihydropyrimidindehydrogenase-Diagnostik) oder vor Therapie mit bestimmten trizyklischen Antidepressiva bzw. Neuroleptika (CYP2D6-Diagnostik) muss man aber heute schon fragen, ob ihre Durchführung ohne eine vorangehende pharmakogenetische Diagnostik noch zu vertreten ist.

Abstract

Individual differences in the effect and side effect of drugs are partly due to genetic factors (genetic polymorphisms). The responsible polymorphisms lie in genes encoding for drug metabolism and transport but also in direct and indirect drug targets. While genetic variants in pharmacokinetic structures exert effects on drug efficacy via the differences in drug exposure, polymorphisms in drug targets can directly affect clinical efficacy and may lead to a broad variation spectrum between inefficacy and severe side effects. However, at present, our knowledge on genetic variants in drug targets is less detailed than the knowledge on pharmacogenetic variability within drug metabolism. A goal of pharmacogenetic diagnostics implemented in clinical practice is to better predict the individual drug effects on the basis of molecular-genetic profiles. Therapy recommendations can be given as dose adjustments, in particular in the case of polymorphisms of drug metabolizing enzymes which will lead to less variable drug concentrations. At present there are few examples of the application of pharmacogenetic tests in Germany in order to improve and individualize drug therapy. The reasons for this are multifold. On the one hand it is due to the limited awareness of pharmacogenetics; on the other hand it may be due to the lack of fast and economical availability of the appropriate laboratory tests. The most important reason, however, may be that most results of pharmacogenetic research are so far not translated into therapeutically usable conclusions and therapy recommendations. Thus, testing for a genotype without concrete consequences for the drug therapy of an individual patient does not make sense. Pharmacogenetic research, thereby, stands in many cases at the threshold to clinical applicability and in many cases, for instance for the genotyping for thiopurine methyltransferase polymorphisms prior to azathioprine therapy or of dihydropyrimidine dehydrogenase polymorphisms prior to treatment with 5-fluorouracil, as well as for diagnostics of CYP2D6 before therapy with certain tricyclic antidepressants and neuroleptics, one would ask already today whether a such drug therapy is still responsible without pharmacogenetic diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Kalow W (2001) Pharmacogenetics, pharmacogenomics, and pharmacobiology. Clin Pharmacol Ther 70:1–4

    Article  PubMed  CAS  Google Scholar 

  2. Nuffield Council on Bioethics (2003) Pharmacogenetics ethical issues. The Dorset Press, 132 pages

  3. Council for International Organizations of Medical Sciences (CIOMS) (2005) Pharmacogenetics—towards improving treatment with medicines. CIOMS, 224 pages

  4. Nationaler Ethikrat (2004) Stellungnahme Biobanken für die Forschung. Nationaler Ethikrat, Berlin, 120 Seiten

  5. Evans WE, McLeod HL (2003) Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med 348:538–549

    Article  PubMed  CAS  Google Scholar 

  6. Brockmöller J, Kirchheiner J, Meisel C, Roots I (2000) Pharmacogenetic diagnostics of cytochrome P450 polymorphisms in clinical drug development and in drug treatment. Pharmacogenomics 1:125–151

    Article  PubMed  Google Scholar 

  7. Brockmöller J, Cascorbi I, Henning S et al. (2000) Molecular genetics of cancer susceptibility. Pharmacology 61:212–227

    Article  PubMed  Google Scholar 

  8. Shimada T, Yamazaki H, Mimura M et al. (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414–423

    PubMed  CAS  Google Scholar 

  9. de Morais SM, Wilkinson GR, Blaisdell J et al. (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269:15419–15422

    PubMed  CAS  Google Scholar 

  10. Sachse C, Brockmöller J, Bauer S, Roots I (1997) Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60:284–295

    PubMed  CAS  Google Scholar 

  11. Miners JO, Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45:525–538

    Article  PubMed  CAS  Google Scholar 

  12. Sata F, Sapone A, Elizondo G et al. (2000) CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity. Clin Pharmacol Ther 67:48–56

    Article  PubMed  CAS  Google Scholar 

  13. Dahl ML, Johansson I, Bertilsson L et al. (1995) Ultrarapid hydroxylation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis. J Pharmacol Exp Ther 274:516–520

    PubMed  CAS  Google Scholar 

  14. Desta Z, Zhao X, Shin JG, Flockhart DA (2002) Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 41:913–958

    Article  PubMed  CAS  Google Scholar 

  15. Xie HG, Stein CM, Kim RB et al. (1999) Allelic, genotypic and phenotypic distributions of S-mephenytoin 4’-hydroxylase (CYP2C19) in healthy Caucasian populations of European descent throughout the world. Pharmacogenetics 9:539–549

    PubMed  CAS  Google Scholar 

  16. Bertilsson L (1995) Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet 29:192–209

    Article  PubMed  CAS  Google Scholar 

  17. Yasar U, Tybring G, Hidestrand M et al. (2001) Role of CYP2C9 polymorphism in losartan oxidation. Drug Metab Dispos 29:1051–1066

    PubMed  CAS  Google Scholar 

  18. Kirchheiner J, Brockmöller J (2005) Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 77:1–16

    Article  PubMed  CAS  Google Scholar 

  19. Kirchheiner J, Meineke I, Freytag G et al. (2002) Enantiospecific effects of cytochrome P450 2C9 amino acid variants on ibuprofen pharmacokinetics and on the inhibition of cyclooxygenases 1 and 2. Clin Pharmacol Ther 72:62–75

    Article  PubMed  CAS  Google Scholar 

  20. Kirchheiner J, Brockmöller J, Meineke I et al. (2002) Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin Pharmacol Ther 71:286–296

    Article  PubMed  CAS  Google Scholar 

  21. Scordo MG, Pengo V, Spina E et al. (2002) Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 72:702–710

    Article  PubMed  CAS  Google Scholar 

  22. Aithal GP, Day CP, Kesteven PJ, Daly AK (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353:717–719

    Article  PubMed  CAS  Google Scholar 

  23. Rieder MJ, Reiner AP, Gage BF et al. (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352:2285–2293

    Article  PubMed  CAS  Google Scholar 

  24. Drysdale CM, McGraw DW, Stack CB et al. (2000) Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci USA 97:10483–10488

    Article  PubMed  CAS  Google Scholar 

  25. Israel E, Drazen JM, Liggett SB et al. (2000) The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am J Respir Crit Care Med 162:75–80

    PubMed  CAS  Google Scholar 

  26. Dishy V, Sofowora GG, Xie HG et al. (2001) The effect of common polymorphisms of the beta2-adrenergic receptor on agonist-mediated vascular desensitization. N Engl J Med 345:1030–1035

    Article  PubMed  CAS  Google Scholar 

  27. Kaiser R, Hofer A, Grapengiesser A et al. (2003) L-Dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology 60:1750–1755

    PubMed  CAS  Google Scholar 

  28. Kirchheiner J, Nickchen K, Sasse J (2006) A 40-basepair VNTR polymorphism in the dopamine transporter (DAT1) gene and the rapid response to antidepressant treatment. Pharmacogenomics J (in press)

  29. Drazen JM, Yandava CN, Dube L et al. (1999) Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet 22:168–170

    Article  PubMed  CAS  Google Scholar 

  30. Poirier J, Delisle MC, Quirion R et al. (1995) Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci USA 92:12260–1226

    Article  PubMed  CAS  Google Scholar 

  31. Sesti F, Abbott GW, Wei J et al. (2000) A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc Natl Acad Sci USA 97:10613–10618

    Article  PubMed  CAS  Google Scholar 

  32. Cooke GE, Bray PF, Hamlington JD et al. (1998) PlA2 polymorphism and efficacy of aspirin. Lancet 351:1253

    Article  PubMed  CAS  Google Scholar 

  33. Michelson AD, Furman MI, Goldschmidt-Clermont P et al. (2000) Platelet GP IIIa Pl(A) polymorphisms display different sensitivities to agonists. Circulation 101:1013–1018

    PubMed  CAS  Google Scholar 

  34. Wheeler GL, Braden GA, Bray PF et al. (2002) Reduced inhibition by abciximab in platelets with the PlA2 polymorphism. Am Heart J 143:76–82

    Article  PubMed  CAS  Google Scholar 

  35. Kuivenhoven JA, Jukema JW, Zwinderman AH et al. (1998) The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. N Engl J Med 338:86–93

    Article  PubMed  CAS  Google Scholar 

  36. Cusi D, Barlassina C, Azzani T et al. (1997) Polymorphisms of alpha-adducin and salt sensitivity in patients with essential hypertension. Lancet 349:1353–1357

    Article  PubMed  CAS  Google Scholar 

  37. Ueda S, Meredith PA, Morton JJ et al. (1998) ACE (I/D) genotype as a predictor of the magnitude and duration of the response to an ACE inhibitor drug (enalaprilat) in humans. Circulation 98:2148–21453

    PubMed  CAS  Google Scholar 

  38. Baselga J, Tripathy D, Mendelsohn J et al. (1996) Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14:737–744

    PubMed  CAS  Google Scholar 

  39. Zika E, Gurwitz D, Ibarreta D (2006) Pharmacogenetics and Pharmacogenomics: state-of-the-art and potential socio-economic impact in the EU. European commission science and technology observatory EUR22214:1–188

    Google Scholar 

  40. Kaskas BA, Louis E, Hindorf U et al. (2003) Safe treatment of thiopurine S-methyltransferase deficient Crohn‘s disease patients with azathioprine. Gut 52:140–142

    Article  PubMed  CAS  Google Scholar 

  41. Hetherington S, Hughes AR, Mosteller M et al. (2002) Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359:1121–1122

    Article  PubMed  CAS  Google Scholar 

  42. Kirchheiner J, Nickchen K, Bauer M et al. (2004) Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kirchheiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchheiner, J., Seeringer, A. & Brockmöller, J. Stand der Pharmakogenetik in der klinischen Arzneimitteltherapie. Bundesgesundheitsbl. 49, 995–1003 (2006). https://doi.org/10.1007/s00103-006-0045-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-006-0045-1

Schlüsselwörter

Keywords

Navigation