Skip to main content
Log in

Therapeutisches Drugmonitoring und pharmakokinetische Modelle als Strategie zur rationalen Antibiotikatherapie bei IntensivpatientInnen

Therapeutic drug monitoring and pharmacokinetic models as a strategy for rational antibiotic therapy in intensive care patients

  • Leitthema
  • Published:
Die Anaesthesiologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund und Ziel der Arbeit

Die Dosierung von Antibiotika ist bei IntensivpatientInnen aufgrund pharmakokinetischer (PK-)Veränderungen komplex. Das Ziel des Beitrags ist es, den Stellenwert von therapeutischem Drugmonitoring (TDM) und PK-Modellen bei der Dosierungsindividualisierung von Antibiotika zu zeigen.

Material und Methoden

Hierfür werden Leitlinien und Empfehlungen im Kontext der klinischen Praxis erörtert und Voraussetzungen für ein routinemäßiges TDM der verschiedenen Antibiotika dargestellt. Zudem werden Nutzen und Limitationen des TDM erörtert. Die Vor- und Nachteile von TDM und PK-Modellen werden beschrieben und daraus resultierende Zukunftsoptionen präsentiert.

Ergebnisse

In der klinischen Routine kann der Spitzen- oder Talspiegel von Antibiotika, abhängig von ihrer Klasse, im Blut gemessen werden. Voraussetzungen für ein zielführendes TDM sind eine koordinierte Blutentnahme und eine zeitnahe Befundmitteilung. Da Zielbereiche regelhaft nicht einheitlich definiert sind, gestalten sich Dosierungsanpassungen schwierig. Die PK-Modelle bieten eine valide Möglichkeit, die Antibiotikatherapie von IntensivpatientInnen zu individualisieren. Anwendungsbereiche sind die Kalkulation der initialen Antibiotikadosis, aber auch die Kombination mit TDM zur Therapiesteuerung. Für wen und wie oft ein TDM notwendig ist, und wie es mit PK-Modellen bestmöglich kombiniert oder durch diese sogar ersetzt werden kann, sollte neben der Evaluation des optimalen Zielbereichs zukünftig untersucht werden.

Schlussfolgerung

Das routinemäßige TDM von Antibiotika bei IntensivpatientInnen ist nur unter oben genannten Voraussetzungen zielführend. Durch die Kombination mit PK-Modellen könnte die Therapie zukünftig optimiert werden.

Abstract

Background and objective

Antibiotic dosing in intensive care patients is complex due to pharmacokinetic (PK) alterations. The aim of this article is to illustrate the role of therapeutic drug monitoring (TDM) and PK models to individualize antibiotic dosing.

Material and methods

Guidelines and recommendations are discussed in the context of clinical practice and the prerequisites for routine TDM of different antibiotics are presented. In addition, the benefits and limitations of TDM are discussed. The advantages and disadvantages of TDM and PK models are described and the resulting future options are presented.

Results

In the clinical routine, the peak or trough concentrations of antibiotics in blood are measured depending on the antibiotic class. Prerequisites for a purposeful TDM are a coordinated blood sampling and a prompt reporting of findings. As target ranges are not uniformly defined following rules, dosage adjustments are difficult. The PK models offer a valid possibility to individualize the antibiotic therapy of intensive care patients. Areas of application are the calculation of the loading dose and the combination with TDM for treatment control. For whom and how often TDM is necessary and how it can best be combined with PK models or even replace them should be investigated in the future, in addition to evaluation of the optimal target area.

Conclusion

The routine use of TDM for antibiotics in intensive care patients is only effective under the abovementioned conditions. By combination with PK models the treatment could be optimized in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Abdul-Aziz MH, Alffenaar J‑WC, Bassetti M et al (2020) Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper. Intensive Care Med 46:1127–1153. https://doi.org/10.1007/s00134-020-06050-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alsultan A (2019) Determining therapeutic trough ranges for linezolid. Saudi Pharm J 27:1061–1063. https://doi.org/10.1016/j.jsps.2019.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. AWMF online (2020) German S2k guideline parenteral antibiotics. https://www.awmf.org/uploads/tx_szleitlinien/S82-006l_S2k_Parenterale_Antibiotika_2018-1.pdf. Zugegriffen: 18. Nov. 2020

  4. Broeker A, Nardecchia M, Klinker KP et al (2019) Towards precision dosing of vancomycin: a systematic evaluation of pharmacometric models for Bayesian forecasting. Clin Microbiol Infect 25:1286.e1–1286.e7. https://doi.org/10.1016/j.cmi.2019.02.029

    Article  CAS  Google Scholar 

  5. Carrié C, Petit L, d’Houdain N et al (2018) Association between augmented renal clearance, antibiotic exposure and clinical outcome in critically ill septic patients receiving high doses of β‑lactams administered by continuous infusion: a prospective observational study. Int J Antimicrob Agents 51:443–449. https://doi.org/10.1016/j.ijantimicag.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  6. Chen P, Chen F, Lei J, Zhou B (2020) Clinical outcomes of continuous vs intermittent meropenem infusion for the treatment of sepsis: a systematic review and meta-analysis. Adv Clin Exp Med 29:993–1000. https://doi.org/10.17219/acem/121934

    Article  PubMed  Google Scholar 

  7. Cheng Y, Wang C‑Y, Li Z‑R et al (2021) Can population pharmacokinetics of antibiotics be extrapolated? Implications of external evaluations. Clin Pharmacokinet 60:53–68. https://doi.org/10.1007/s40262-020-00937-4

    Article  CAS  PubMed  Google Scholar 

  8. Ehmann L, Zoller M, Minichmayr IK et al (2017) Role of renal function in risk assessment of target non-attainment after standard dosing of meropenem in critically ill patients: a prospective observational study. Crit Care 21:263. https://doi.org/10.1186/s13054-017-1829-4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Engel C, Brunkhorst FM, Bone H‑G et al (2007) Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med 33:606–618. https://doi.org/10.1007/s00134-006-0517-7

    Article  PubMed  Google Scholar 

  10. Evans L, Rhodes A, Alhazzani W et al (2021) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med 49:e1063. https://doi.org/10.1097/CCM.0000000000005337

    Article  PubMed  Google Scholar 

  11. Felton TW, Hope WW, Roberts JA (2014) How severe is antibiotic pharmacokinetic variability in critically ill patients and what can be done about it? Diagn Microbiol Infect Dis 79:441–447. https://doi.org/10.1016/j.diagmicrobio.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  12. Guilhaumou R, Benaboud S, Bennis Y et al (2019) Optimization of the treatment with beta-lactam antibiotics in critically ill patients—guidelines from the French society of pharmacology and therapeutics (Société Française de Pharmacologie et Thérapeutique—SFPT) and the French society of anaesthesia and intensive care medicine (Société Française d’Anesthésie et Réanimation—SFAR). Crit Care 23:104. https://doi.org/10.1186/s13054-019-2378-9

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jamal J‑A, Mueller BA, Choi GYS et al (2015) How can we ensure effective antibiotic dosing in critically ill patients receiving different types of renal replacement therapy? Diagn Microbiol Infect Dis 82:92–103. https://doi.org/10.1016/j.diagmicrobio.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  14. Jelliffe R, Neely M (2016) Individualized drug therapy for patients. Elsevier

    Google Scholar 

  15. Kantasiripitak W, Van Daele R, Gijsen M et al (2020) Software tools for model-informed precision dosing: how well do they satisfy the needs? Front Pharmacol 11:620. https://doi.org/10.3389/fphar.2020.00620

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kumar A, Roberts D, Wood KE et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596. https://doi.org/10.1097/01.CCM.0000217961.75225.E9

    Article  PubMed  Google Scholar 

  17. Li C, Du X, Kuti JL, Nicolau DP (2007) Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother 51:1725–1730. https://doi.org/10.1128/AAC.00294-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liebchen U, Paal M, Scharf C et al (2020) The ONTAI study—a survey on antimicrobial dosing and the practice of therapeutic drug monitoring in German intensive care units. J Crit Care 60:260–266. https://doi.org/10.1016/j.jcrc.2020.08.027

    Article  CAS  PubMed  Google Scholar 

  19. Martirosov DM, Bidell MR, Pai MP et al (2017) Relationship between vancomycin exposure and outcomes among patients with MRSA bloodstream infections with vancomycin Etest® MIC values of 1.5 mg/L: a pilot study. Diagn Microbiol Infect Dis 88:259–263. https://doi.org/10.1016/j.diagmicrobio.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McKinnon PS, Paladino JA, Schentag JJ (2008) Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T〉MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents 31:345–351. https://doi.org/10.1016/j.ijantimicag.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  21. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ (2004) Pharmacodynamics of vancomycin and other antimicrobials in patients with staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 43:925–942. https://doi.org/10.2165/00003088-200443130-00005

    Article  CAS  PubMed  Google Scholar 

  22. Moore RD, Lietman PS, Smith CR (1987) Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 155:93–99. https://doi.org/10.1093/infdis/155.1.93

    Article  CAS  PubMed  Google Scholar 

  23. Muller AE, Huttner B, Huttner A (2018) Therapeutic drug monitoring of beta-lactams and other antibiotics in the intensive care unit: which agents, which patients and which infections? Drugs 78:439–451. https://doi.org/10.1007/s40265-018-0880-z

    Article  CAS  PubMed  Google Scholar 

  24. Polasek TM, Rostami-Hodjegan A, Yim D‑S et al (2019) What does it take to make model-informed precision dosing common practice? Report from the 1st asian symposium on precision dosing. AAPS J 21:17. https://doi.org/10.1208/s12248-018-0286-6

    Article  PubMed  Google Scholar 

  25. Richter DC, Frey O, Röhr A et al (2019) Therapeutic drug monitoring-guided continuous infusion of piperacillin/tazobactam significantly improves pharmacokinetic target attainment in critically ill patients: a retrospective analysis of four years of clinical experience. Infection 47:1001–1011. https://doi.org/10.1007/s15010-019-01352-z

    Article  CAS  PubMed  Google Scholar 

  26. Richter DC, Heininger A, Brenner T et al (2019) Bacterial sepsis : diagnostics and calculated antibiotic therapy. Anaesthesist 68:40–62. https://doi.org/10.1007/s00101-017-0396-z

    Article  CAS  PubMed  Google Scholar 

  27. Roberts JA, Abdul-Aziz M‑H, Davis JS et al (2016) Continuous versus intermittent β‑Lactam infusion in severe sepsis. A meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med 194:681–691. https://doi.org/10.1164/rccm.201601-0024OC

    Article  CAS  PubMed  Google Scholar 

  28. Roberts JA, Abdul-Aziz MH, Lipman J et al (2014) Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 14:498–509. https://doi.org/10.1016/S1473-3099(14)70036-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Roberts JA, Paul SK, Akova M et al (2014) DALI: defining antibiotic levels in intensive care unit patients: are current β‑lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis 58:1072–1083. https://doi.org/10.1093/cid/ciu027

    Article  CAS  PubMed  Google Scholar 

  30. Sandaradura I, Alffenaar J‑W, Cotta MO et al (2021) Emerging therapeutic drug monitoring of anti-infective agents in Australian hospitals: availability, performance and barriers to implementation. Br J Clin Pharmacol. https://doi.org/10.1111/bcp.14995

    Article  PubMed  Google Scholar 

  31. Scharf C (2020) The higher the better? Defining the optimal beta-lactam target for critically ill patients to reach infection resolution and improve outcome. J Intensive Care. https://doi.org/10.1186/s40560-020-00504-w

    Article  PubMed  PubMed Central  Google Scholar 

  32. Scherf-Clavel O (2020) Population pharmacokinetics and antiinfective drugs. Pharmakon 8:256–264. https://doi.org/10.1691/pn.20200025

    Article  Google Scholar 

  33. Töpper C, Steinbach CL, Dorn C et al (2016) Variable linezolid exposure in ICU patients-possible role of drug-drug interactions. Ther Drug Monit. https://doi.org/10.1097/FTD.0000000000000324

    Article  PubMed  Google Scholar 

  34. Van Der Heggen T, Buyle FM, Claus B et al (2021) Vancomycin dosing and therapeutic drug monitoring practices: guidelines versus real-life. Int J Clin Pharm 43:1394–1403. https://doi.org/10.1007/s11096-021-01266-7

    Article  CAS  PubMed  Google Scholar 

  35. Vincent J‑L, Rello J, Marshall J et al (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329. https://doi.org/10.1001/jama.2009.1754

    Article  CAS  PubMed  Google Scholar 

  36. Wicha SG, Märtson A‑G, Nielsen EI et al (2021) From therapeutic drug monitoring to model-informed precision dosing for antibiotics. Clin Pharmacol Ther 109:928–941. https://doi.org/10.1002/cpt.2202

    Article  CAS  PubMed  Google Scholar 

  37. Zoller M, Maier B, Hornuss C et al (2014) Variability of linezolid concentrations after standard dosing in critically ill patients: a prospective observational study. Crit Care 18:R148. https://doi.org/10.1186/cc13984

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Liebchen.

Ethics declarations

Interessenkonflikt

L.M. Schatz, M. Zoller, C. Scharf und U. Liebchen geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den AutorInnen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

C. Scharf und U. Liebchen trugen zu gleichen Teilen zur vorliegenden Arbeit bei.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schatz, L.M., Zoller, M., Scharf, C. et al. Therapeutisches Drugmonitoring und pharmakokinetische Modelle als Strategie zur rationalen Antibiotikatherapie bei IntensivpatientInnen. Anaesthesiologie 71, 495–501 (2022). https://doi.org/10.1007/s00101-022-01150-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-022-01150-7

Schlüsselwörter

Keywords

Navigation