Skip to main content
Log in

Perioperative medikamentöse Kreislaufunterstützung in der täglichen Routine

Perioperative pharmacological circulatory support in daily clinical routine

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Perioperative hypotensive Phasen sind mit der Zunahme von postoperativen Komplikationen und Organschäden assoziiert. Während noch vor einigen Jahren die hämodynamische Stabilisierung in erster Linie durch Volumengaben geprägt war, haben in letzter Zeit der Einsatz und auch die Dosierung kardiovaskulär aktiver Substanzen deutlich zugenommen. Wie für die intravasale Volumentherapie gilt auch für die Therapie mithilfe Herz-Kreislauf-wirksamer Substanzen, dass diese aufgrund ihrer geringen therapeutischen Breite Nebenwirkungen haben. Im vorliegenden Übersichtsbeitrag werden konkrete Indikationen der einzelnen kardiovaskulär aktiven Wirkstoffe mit den jeweiligen Vor- und Nachteilen diskutiert. Besonderer Fokus liegt auf der Fragestellung der Applikationsform: zentraler Venenkatheter vs. periphere Venenverweilkanüle. Die Autoren kommen zu dem Schluss, dass sich nicht die Frage stellt, ob es prinzipiell erlaubt ist, Herz-Kreislauf wirksame Medikamente periphervenös zu applizieren, sondern vielmehr, was dabei zu beachten ist. Der Beitrag gibt entsprechende Empfehlungen.

Abstract

Perioperative phases of hypotension are associated with an increase in postoperative complications and organ damage. Whereas some years ago hemodynamic stabilization was primarily carried out by volume supplementation, in recent years the use and dosing of cardiovascular-active substances has significantly increased. But like intravascular volume therapy, also substances with a cardiovascular effect have therapeutic margins, and thus, potential side effects. This review article discusses indications for each cardiovascular-active agent, weighing up advantages and disadvantages. Special attention is paid to the question how to administrate them: central venous catheter vs. peripheral indwelling venous cannula. The authors come to the conclusion that it is not a question of whether it is principally allowed to apply cardiovascular-active drugs via peripheral veins but more importantly, what should be taken into consideration if a peripheral venous access is used. This article provides concise recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Futier E, Lefrant JY, Guinot PG et al (2017) Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. JAMA 318(14):1346–1357

    Google Scholar 

  2. Maheshwari K, Turan A, Mao G et al (2018) The association of hypotension during non-cardiac surgery, before and after skin incision, with postoperative acute kidney injury: a retrospective cohort analysis. Anaesthesia 73(10):1223–1228

    CAS  Google Scholar 

  3. Saugel B, Kouz K, Hoppe P, Maheshwari K, Scheeren TWL (2019) Predicting hypotension in perioperative and intensive care medicine. Best Pract Res Clin Anaesthesiol 33(2):189–197

    Google Scholar 

  4. Welte M, Saugel B, Reuter DA (2020) Perioperatives Blutdruckmanagement. Was ist der optimale Druck? Anästhesist. https://doi.org/10.1007/s00101-020-00767-w. Online ahead of print

    Article  Google Scholar 

  5. Reuter DA, Chappell D, Perel A (2018) The dark sides of fluid administration in the critically ill patient. Intensive Care Med 44(7):1138–1140

    CAS  Google Scholar 

  6. Chappell D, Bruegger D, Potzel J et al (2014) Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care 18(5):538

    Google Scholar 

  7. Navarro LH, Bloomstone JA, Auler JO Jr. et al (2015) Perioperative fluid therapy: a statement from the international fluid optimization group. Perioper Med 4:3

    Google Scholar 

  8. Vincent JL, De Backer D (2013) Circulatory shock. N Engl J Med 369(18):1726–1734

    CAS  Google Scholar 

  9. Vincent JL, Cecconi M, Saugel B (2019) Is this patient really “(un)stable”? How to describe cardiovascular dynamics in critically ill patients. Crit Care 23(1):272

    Google Scholar 

  10. Saugel B, Kouz K, Scheeren TWL (2019) The “5 Ts” of perioperative goal-directed haemodynamic therapy. Br J Anaesth 123(2):103–107

    Google Scholar 

  11. Kasaba T, Kondou O, Yoshimura Y, Watanabe Y, Takasaki M (1998) Haemodynamic effects of induction of general anaesthesia with propofol during epidural anaesthesia. Can J Anaesth 45(11):1061–1065

    CAS  Google Scholar 

  12. Robinson BJ, Ebert TJ, O’Brien TJ, Colinco MD, Muzi M (1997) Mechanisms whereby propofol mediates peripheral vasodilation in humans. Sympathoinhibition or direct vascular relaxation? Anesthesiology 86(1):64–72

    CAS  Google Scholar 

  13. Sudfeld S, Brechnitz S, Wagner JY et al (2017) Post-induction hypotension and early intraoperative hypotension associated with general anaesthesia. Br J Anaesth 119(1):57–64

    CAS  Google Scholar 

  14. Lambden S, Creagh-Brown BC, Hunt J, Summers C, Forni LG (2018) Definitions and pathophysiology of vasoplegic shock. Crit Care 22(1):174

    Google Scholar 

  15. Andreis DT, Singer M (2016) Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med 42(9):1387–1397

    CAS  Google Scholar 

  16. Monnet X, Jabot J, Maizel J, Richard C, Teboul JL (2011) Norepinephrine increases cardiac preload and reduces preload dependency assessed by passive leg raising in septic shock patients. Crit Care Med 39(4):689–694

    CAS  Google Scholar 

  17. Martin C, Papazian L, Perrin G, Saux P, Gouin F (1993) Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest 103(6):1826–1831

    CAS  Google Scholar 

  18. Mueller H, Ayres SM, Gregory JJ, Giannelli S Jr., Grace WJ (1970) Hemodynamics, coronary blood flow, and myocardial metabolism in coronary shock; response of 1‑norepinephrine and isoproterenol. J Clin Invest 49(10):1885–1902

    CAS  Google Scholar 

  19. Van Maanen EF, Banning JW, Roebel LE, Morgan JP (1988) Dopamine and norepinephrine increase venous return by stimulating alpha and beta adrenoceptors in the dog. J Cardiovasc Pharmacol 11(6):627–634

    CAS  Google Scholar 

  20. Hamzaoui O, Georger JF, Monnet X et al (2010) Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care 14(4):R142

    Google Scholar 

  21. Shen T, Baker K (2015) Venous return and clinical hemodynamics: how the body works during acute hemorrhage. Am J Physiol 39(4):267–271

    Google Scholar 

  22. Greenway CV, Seaman KL, Innes IR (1985) Norepinephrine on venous compliance and unstressed volume in cat liver. Am J Physiol 248(4 Pt 2):H468–76

    CAS  Google Scholar 

  23. Rothe CF (1986) Physiology of venous return. An unappreciated boost to the heart. Arch Intern Med 146(5):977–982

    CAS  Google Scholar 

  24. Georger JF, Hamzaoui O, Chaari A, Maizel J, Richard C, Teboul JL (2010) Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients. Intensive Care Med 36(11):1882–1889

    CAS  Google Scholar 

  25. Annane D, Ouanes-Besbes L, de Backer D et al (2018) A global perspective on vasoactive agents in shock. Intensive Care Med 44(6):833–846

    CAS  Google Scholar 

  26. van Loon LM, Stolk RF, van der Hoeven JG et al (2020) Effect of vasopressors on the macro- and microcirculation during systemic inflammation in humans in vivo. Shock 53(2):171–174. https://doi.org/10.1097/SHK.0000000000001357

    Article  CAS  Google Scholar 

  27. Legrand M, De Backer D, Depret F, Ait-Oufella H (2019) Recruiting the microcirculation in septic shock. Ann Intensive Care 9(1):102

    Google Scholar 

  28. Poterman M, Vos JJ, Vereecke HE et al (2015) Differential effects of phenylephrine and norepinephrine on peripheral tissue oxygenation during general anaesthesia: a randomised controlled trial. Eur J Anaesthesiol 32(8):571–580

    CAS  Google Scholar 

  29. George RB, Boyd C, McKeen D, Abdo IS, Lehmann C (2019) Possible impact of spinal anesthesia and phenylephrine on sublingual microcirculation of cesarean delivery patients. J Clin Med Res 11(8):543–549

    CAS  Google Scholar 

  30. Zunic M, Krcevski Skvarc N, Kamenik M (2019) The influence of the infusion of ephedrine and phenylephrine on the hemodynamic stability after subarachnoid anesthesia in senior adults—a controlled randomized trial. BMC Anesthesiol 19(1):207

    Google Scholar 

  31. Hayakawa-Fujii Y, Iida H, Dohi S (1999) Propofol anesthesia enhances pressor response to ephedrine in patients given clonidine. Anesth Analg 89(1):37–41

    CAS  Google Scholar 

  32. Yamamoto K, Ikeda U, Okada K et al (1997) Arginine vasopressin increases nitric oxide synthesis in cytokine-stimulated rat cardiac myocytes. Hypertension 30(5):1112–1120

    CAS  Google Scholar 

  33. Holmes CL, Walley KR, Chittock DR, Lehman T, Russell JA (2001) The effects of vasopressin on hemodynamics and renal function in severe septic shock: a case series. Intensive Care Med 27(8):1416–1421

    CAS  Google Scholar 

  34. Schwarte LA, Schwartges I, Schober P, Scheeren TW, Fournell A, Picker O (2010) Sevoflurane and propofol anaesthesia differentially modulate the effects of epinephrine and norepinephrine on microcirculatory gastric mucosal oxygenation. Br J Anaesth 105(4):421–428

    CAS  Google Scholar 

  35. Nacul FE, Guia IL, Lessa MA, Tibirica E (2010) The effects of vasoactive drugs on intestinal functional capillary density in endotoxemic rats: intravital video-microscopy analysis. Anesth Analg 110(2):547–554

    CAS  Google Scholar 

  36. Sakka SG, Hofmann D, Thuemer O, Schelenz C, van Hout N (2007) Increasing cardiac output by epinephrine after cardiac surgery: effects on indocyanine green plasma disappearance rate and splanchnic microcirculation. J Cardiothorac Vasc Anesth 21(3):351–356

    CAS  Google Scholar 

  37. Heringlake M, Wernerus M, Grunefeld J et al (2007) The metabolic and renal effects of adrenaline and milrinone in patients with myocardial dysfunction after coronary artery bypass grafting. Crit Care 11(2):R51

    Google Scholar 

  38. Meier-Hellmann A, Reinhart K, Bredle DL, Specht M, Spies CD, Hannemann L (1997) Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med 25(3):399–404

    CAS  Google Scholar 

  39. Kastrup M, Markewitz A, Spies C et al (2007) Current practice of hemodynamic monitoring and vasopressor and inotropic therapy in post-operative cardiac surgery patients in Germany: results from a postal survey. Acta Anaesthesiol Scand 51(3):347–358

    CAS  Google Scholar 

  40. Habicher M, Zajonz T, Heringlake M, Böning A, Treskatsch S, Schirmer U, Markewitz A, Sander M (2018) S3 guidelines on intensive medical care of cardiac surgery patients: Hemodynamic monitoring and cardiovascular system – an update. Anaesthesist 67(5):375–379. https://doi.org/10.1007/s00101-018-0433-6

    Article  CAS  Google Scholar 

  41. Moller MH, Granholm A, Junttila E et al (2018) Scandinavian SSAI clinical practice guideline on choice of inotropic agent for patients with acute circulatory failure. Acta Anaesthesiol Scand 62(4):420–450

    CAS  Google Scholar 

  42. Fink T, Heymann P, Taha-Melitz S et al (2013) Dobutamine pretreatment improves survival, liver function, and hepatic microcirculation after polymicrobial sepsis in rat. Shock 40(2):129–135

    CAS  Google Scholar 

  43. Chiarandini P, Pompei L, Costa MG et al (2013) Effects of catecholamines on microcirculation during general inhalation anesthesia. J Cardiothorac Vasc Anesth 27(6):1239–1245

    CAS  Google Scholar 

  44. Bomberg H, Bierbach B, Flache S, Novak M, Schafers HJ, Menger MD (2019) Dobutamine versus vasopressin after mesenteric ischemia. J Surg Res 235:410–423

    CAS  Google Scholar 

  45. Hernandez G, Bruhn A, Luengo C et al (2013) Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med 39(8):1435–1443

    CAS  Google Scholar 

  46. Lopes de Miranda M, Pereira SJ, Santos AO, Villela NR, Kraemer-Aguiar LG, Bouskela E (2015) Milrinone attenuates arteriolar vasoconstriction and capillary perfusion deficits on endotoxemic hamsters. PLoS ONE 10(2):e117004

    Google Scholar 

  47. Schwarte LA, Picker O, Bornstein SR, Fournell A, Scheeren TW (2005) Levosimendan is superior to milrinone and dobutamine in selectively increasing microvascular gastric mucosal oxygenation in dogs. Crit Care Med 33(1):135–142 (discussion 246–7)

    CAS  Google Scholar 

  48. Kloth B, Pecha S, Moritz E et al (2017) Akrinor(TM), a cafedrine/theodrenaline mixture (20:1), increases force of contraction of human atrial myocardium but does not constrict internal mammary artery in vitro. Front Pharmacol 8:272

    Google Scholar 

  49. Weitzel M, Hammels P, Schorer C, Klingler H, Weyland A (2018) Hemodynamic effects of cafedrine/theodrenaline on anesthesia-induced hypotension. Anaesthesist 67(10):766–772

    CAS  Google Scholar 

  50. Chappell D, Helf A, Gayer J, Eberhart L, Kranke P (2019) Antihypotensive drugs in cesarean sections : treatment of arterial hypotension with ephedrine, phenylephrine and akrinor(R) (cafedrine/theodrenaline) during cesarean sections with spinal anesthesia. Anaesthesist 68(4):228–238

    Google Scholar 

  51. Saugel B, Reese PC, Sessler DI et al (2019) Automated ambulatory blood pressure measurements and intraoperative hypotension in patients having noncardiac surgery with general anesthesia: a prospective observational study. Anesthesiology 131(1):74–83

    Google Scholar 

  52. Kaufmann T, Saugel B, Scheeren TWL (2019) Perioperative goal-directed therapy—what is the evidence? Best Pract Res Clin Anaesthesiol 33(2):179–187

    Google Scholar 

  53. Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43(3):304–377

    Google Scholar 

  54. Levy MM, Evans LE, Rhodes A (2018) The surviving sepsis campaign bundle: 2018 update. Crit Care Med 46(6):997–1000

    Google Scholar 

  55. Moller MH, Claudius C, Junttila E et al (2016) Scandinavian SSAI clinical practice guideline on choice of first-line vasopressor for patients with acute circulatory failure. Acta Anaesthesiol Scand 60(10):1347–1366

    CAS  Google Scholar 

  56. Hajjar LA, Vincent JL, Barbosa Gomes Galas FR et al (2017) Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: the VANCS randomized controlled trial. Anesthesiology 126(1):85–93

    CAS  Google Scholar 

  57. Hajjar LA, Zambolim C, Belletti A et al (2019) Vasopressin versus norepinephrine for the management of septic shock in cancer patients: the VANCS II randomized clinical trial. Crit Care Med 47(12):1743–1750

    CAS  Google Scholar 

  58. McIntyre WF, Um KJ, Alhazzani W et al (2018) Association of vasopressin plus catecholamine vasopressors vs catecholamines alone with atrial fibrillation in patients with distributive shock: a systematic review and meta-analysis. JAMA 319(18):1889–1900

    CAS  Google Scholar 

  59. Honarmand K, Um KJ, Belley-Cote EP et al (2020) Canadian critical care society clinical practice guideline: the use of vasopressin and vasopressin analogues in critically ill adults with distributive shock. Can J Anaesth 67(3):369–376. https://doi.org/10.1007/s12630-019-01546-x

    Article  CAS  Google Scholar 

  60. Bayerl S, Wohrle T, Kilger E (2020) Vasopressin in distributive shock : brief summary of the guidelines of the Canadian critical care society published in december 2019. Anaesthesist 69(3):159–161

    CAS  Google Scholar 

  61. Lord MS, Augoustides JG (2012) Perioperative management of pheochromocytoma: focus on magnesium, clevidipine, and vasopressin. J Cardiothorac Vasc Anesth 26(3):526–531

    CAS  Google Scholar 

  62. Leopold V, Gayat E, Pirracchio R et al (2018) Epinephrine and short-term survival in cardiogenic shock: an individual data meta-analysis of 2583 patients. Intensive Care Med 44(6):847–856

    CAS  Google Scholar 

  63. Belletti A, Nagy A, Sartorelli M et al (2020) Effect of continuous epinephrine infusion on survival in critically ill patients. A meta-analysis of randomized trials. Crit Care Med 48(3):398–405. https://doi.org/10.1097/CCM.0000000000004127

    Article  Google Scholar 

  64. Sauerland C, Engelking C, Wickham R, Corbi D (2006) Vesicant extravasation part I: mechanisms, pathogenesis, and nursing care to reduce risk. Oncol Nurs Forum 33(6):1134–1141

    Google Scholar 

  65. Le A, Patel S (2014) Extravasation of noncytotoxic drugs: a review of the literature. Ann Pharmacother 48(7):870–886

    CAS  Google Scholar 

  66. Kuwahara T, Asanami S, Kawauchi Y, Kubo S (1999) Experimental infusion phlebitis: tolerance pH of peripheral vein. J Toxicol Sci 24(2):113–121

    CAS  Google Scholar 

  67. Lewis T, Merchan C, Altshuler D, Papadopoulos J (2019) Safety of the peripheral administration of vasopressor agents. J Intensive Care Med 34(1):26–33

    Google Scholar 

  68. Loubani OM, Green RS (2015) A systematic review of extravasation and local tissue injury from administration of vasopressors through peripheral intravenous catheters and central venous catheters. J Crit Care 30(3):653.e9–17

    CAS  Google Scholar 

  69. Humphreys J, Johnston JH, Richardson JC (1955) Skin necrosis following intravenous noradrenaline. BMJ 2(4950):1250–1252

    CAS  Google Scholar 

  70. Perlow S, Shapiro RA (1956) Skin necrosis following intravenous use of norepinephrine; report of six cases. Am J Surg 92(4):566–570

    CAS  Google Scholar 

  71. Cardenas-Garcia J, Schaub KF, Belchikov YG, Narasimhan M, Koenig SJ, Mayo PH (2015) Safety of peripheral intravenous administration of vasoactive medication. J Hosp Med 10(9):581–585

    Google Scholar 

  72. Russell JA, Gordon AC, Walley KR (2019) Early may be better: early low-dose norepinephrine in septic shock. Am J Respir Crit Care Med 199(9):1049–1051

    CAS  Google Scholar 

  73. Hallengren M, Astrand P, Eksborg S, Barle H, Frostell C (2017) Septic shock and the use of norepinephrine in an intermediate care unit: mortality and adverse events. PLoS ONE 12(8):e183073

    Google Scholar 

  74. Lampin ME, Rousseaux J, Botte A, Sadik A, Cremer R, Leclerc F (2012) Noradrenaline use for septic shock in children: doses, routes of administration and complications. Acta Paediatr 101(9):e426–30

    CAS  Google Scholar 

  75. Turner DA, Kleinman ME (2010) The use of vasoactive agents via peripheral intravenous access during transport of critically III infants and children. Pediatr Emerg Care 26(8):563–566

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Reuter.

Ethics declarations

Interessenkonflikt

A. Haas, T. Schürholz und D.A. Reuter geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haas, A., Schürholz, T. & Reuter, D.A. Perioperative medikamentöse Kreislaufunterstützung in der täglichen Routine. Anaesthesist 69, 781–792 (2020). https://doi.org/10.1007/s00101-020-00803-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-020-00803-9

Schlüsselwörter

Keywords

Navigation