Skip to main content
Log in

Bestandsaufnahme der Lokalanästhetika 2020

Stocktaking of local anesthetics 2020

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Lokalanästhetika haben sich als sichere und zuverlässig wirkende Substanzen in der klinischen Praxis bewährt und die immensen Fortschritte innerhalb der Regionalanästhesie überhaupt erst möglich gemacht. Dabei wird immer deutlicher, dass Lokalanästhetika weit mehr sind als „schlichte“ Natriumkanalinhibitoren, und dass Interaktionen mit einer ganzen Reihe weiterer Ionenkanäle und anderer molekularer Strukturen zur eigentlichen Nervenblockade beitragen. Zusätzlich lassen sich zahlreiche systemische Effekte nachweisen, die z. T. sogar klinisch genutzt werden können. Durch die gleichzeitige Applikation verschiedener Adjuvanzien wie Opioiden, Kortikosteroiden und α2-Rezeptor-Agonisten wird versucht, die Wirkdauer von Lokalanästhetika nach einmaliger Applikation immer weiter zu verlängern, um eine möglichst effektive postoperative Schmerztherapie zu erzielen. Im selben Kontext sind die Entwicklung und die klinische Einführung von ultralang wirkenden, liposomalen Formulierungen zu sehen, die zumindest theoretisch sensible Nervenfasern über mehrere Tage hinweg blockieren. Die kommenden Jahre werden zeigen, ob sich diese Ansätze zu ernstzunehmenden Alternativen zu personal- und kostenintensiven kontinuierlichen Nervenblockaden entwickeln können.

Systemisch-toxische Zwischenfälle im Rahmen der Anwendung von Lokalanästhetika sind mittlerweile extrem seltene, aber noch immer potenziell lebensbedrohliche Ereignisse, die oftmals nach unbeabsichtigter intravasaler Injektion oder ausgeprägter systemischer Resorption entstehen. Daher besteht die wichtigste Präventionsmaßnahme in der langsamen und fraktionierten Applikation dieser Substanzen mit wiederholtem Aspirieren. Kommt es dennoch zu Intoxikationserscheinungen, kann die i.v.-Gabe von 20 %igen Lipidlösungen zusätzlich zu Basismaßnahmen den Therapierfolg erhöhen.

Abstract

For decades local anesthetics have proven to be safe and effective drugs in the clinical practice, crucially promoting the enormous achievements in regional anesthesia. Meanwhile, it is a well-known fact that local anesthetics are much more than just “simple” sodium channel blockers. They also interact with numerous other ion channels and subcellular structures, enhancing nerve blockade and resulting in systemic “alternative” effects, which can sometimes even be clinically used. By the simultaneous administration of various adjuvants (e.g., opioids, corticosteroids and α2-receptor agonists) attempts are made to prolong the time of action of local anesthetics after a single administration in order to achieve the best possible improvement in postoperative analgesia. In this context, ultralong-acting local anesthetics, such as liposomal bupivacaine, which at least theoretically can provide a sensory nerve block for several days, have been developed and clinically introduced. The coming years will show whether these approaches will develop into genuine alternatives to the personnel and cost-intensive continuous nerve blockades.

Local anesthetic-induced systemic toxicity is meanwhile rare but still a potentially life-threatening event, frequently resulting from accidental intravascular injection or extensive systemic resorption. Consequently, slow and fractional application of these agents with intermittent aspiration helps to prevent toxic sequelae. If toxic symptoms occur, however, the intravenous infusion of 20% lipid solutions in addition to basic treatment measures can enhance the success of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Abdallah FW, Brull R (2013) Facilitatory effects of perineural dexmedetomidine on neuraxial and peripheral nerve block: a systematic review and meta-analysis. Br J Anaesth 110:915–925

    PubMed  CAS  Google Scholar 

  2. Ahrens J, Leffler A (2014) Update zu Pharmakologie und Wirkung von Lokalanästhetika. Anaesthesist 63:376–386

    PubMed  CAS  Google Scholar 

  3. Albrecht E, Kern C, Kirkham KR (2015) A systematic review and meta-analysis of perineural dexamethasone for peripheral nerve blocks. Anaesthesia 70:71–83

    PubMed  CAS  Google Scholar 

  4. Asche CV, Ren J, Kim M et al (2017) Local infiltration for postsurgical analgesia following total hip arthroplasty: a comparison of liposomal bupivacaine to traditional bupivacaine. Curr Med Res Opin 33:1283–1290

    PubMed  CAS  Google Scholar 

  5. www.awmf.org/leitlinien/detail/ll/001-044.html

  6. Baduni N, Sanwal MK, Vajifdar H et al (2016) Postoperative analgesia in children: a comparison of three different doses of caudal epidural morphine. J Anaesthesiol Clin Pharmacol 32:220–223

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Balocco AL, Van Zundert PGE, Gan SS et al (2018) Extended release bupivacaine formulations for postoperative analgesia: an update. Curr Opin Anaesthesiol 31:636–642

    PubMed  Google Scholar 

  8. Barrington MJ, Kluger R (2013) Ultrasound guidance reduces the risk of local anesthetic systemic toxicity following peripheral nerve blockade. Reg Anesth Pain Med 38:289–299

    PubMed  Google Scholar 

  9. Bazin JE, Massoni C, Bruelle P et al (1997) The addition of opioids to local anaesthetics in brachial plexus block: the comparative effects of morphine, buprenorphine and sufentanil. Anaesthesia 52:858–862

    PubMed  CAS  Google Scholar 

  10. Beaussier M, Delbos A, Maurice-Szamburski A et al (2018) Perioperative Use of Intravenous Lidocaine. Drugs 78:1229–1246

    PubMed  CAS  Google Scholar 

  11. Beiranvand S, Eatemadi A, Karimi A (2016) New updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles. Nanoscale Res Lett 11:307

    PubMed  PubMed Central  Google Scholar 

  12. Biki B, Mascha E, Moriarty DC et al (2008) Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology 109:180–187

    PubMed  Google Scholar 

  13. Bomberg H, Bayer I, Wagenpfeil S et al (2018) Prolonged catheter use and infection in regional anesthesia: a retrospective registry analysis. Anesthesiology 128:764–773

    PubMed  Google Scholar 

  14. Bouaziz H, Kinirons BP, Macalou D et al (2000) Sufentanil does not prolong the duration of analgesia in a mepivacaine brachial plexus block: a dose response study. Anesth Analg 90:383–387

    PubMed  CAS  Google Scholar 

  15. Brummett CM, Williams BA (2011) Additives to local anesthetics for peripheral nerve blockade. Int Anesthesiol Clin 49:104–116

    PubMed  PubMed Central  Google Scholar 

  16. Bundscherer A, Malsy M, Bitzinger D et al (2014) Interaktion von Anästhetika und Analgetika mit Tumorzellen. Anaesthesist 63:313–325

    PubMed  CAS  Google Scholar 

  17. Carbone E, Calorio C, Vandael DH (2014) T‑type channel-mediated neurotransmitter release. Pflugers Arch 466:677–687

    PubMed  CAS  Google Scholar 

  18. Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25

    PubMed  CAS  Google Scholar 

  19. Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397–409

    PubMed  CAS  Google Scholar 

  20. Cave G, Harvey M, Graudins A (2011) Intravenous lipid emulsion as antidote: a summary of published human experience. Emerg Med Australas 23:123–141

    PubMed  Google Scholar 

  21. Chahar P, Cummings KC 3rd (2012) Liposomal bupivacaine: a review of a new bupivacaine formulation. J Pain Res 5:257–264

    PubMed  PubMed Central  Google Scholar 

  22. Chernoff DM (1990) Kinetic analysis of phasic inhibition of neuronal sodium currents by lidocaine and bupivacaine. Biophys J 58:53–68

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Choi S, Rodseth R, Mccartney CJ (2014) Effects of dexamethasone as a local anaesthetic adjuvant for brachial plexus block: a systematic review and meta-analysis of randomized trials. Br J Anaesth 112:427–439

    PubMed  CAS  Google Scholar 

  24. Cooke C, Kennedy ED, Foo I et al (2019) Meta-analysis of the effect of perioperative intravenous lidocaine on return of gastrointestinal function after colorectal surgery. Tech Coloproctol 23:15–24

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Drachman D, Strichartz G (1991) Potassium channel blockers potentiate impulse inhibition by local anesthetics. Anesthesiology 75:1051–1061

    PubMed  CAS  Google Scholar 

  26. Dubowitz JA, Sloan EK, Riedel BJ (2018) Implicating anaesthesia and the perioperative period in cancer recurrence and metastasis. Clin Exp Metastasis 35:347–358

    PubMed  Google Scholar 

  27. Elia N, Culebras X, Mazza C et al (2008) Clonidine as an adjuvant to intrathecal local anesthetics for surgery: systematic review of randomized trials. Reg Anesth Pain Med 33:159–167

    PubMed  CAS  Google Scholar 

  28. Epstein-Barash H, Shichor I, Kwon AH et al (2009) Prolonged duration local anesthesia with minimal toxicity. Proc Natl Acad Sci U S A 106:7125–7130

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Exadaktylos AK, Buggy DJ, Moriarty DC et al (2006) Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology 105:660–664

    PubMed  Google Scholar 

  30. Fettiplace MR, Lis K, Ripper R et al (2015) Multi-modal contributions to detoxification of acute pharmacotoxicity by a triglyceride micro-emulsion. J Control Release 198:62–70

    PubMed  CAS  Google Scholar 

  31. Fettiplace MR, Weinberg G (2018) The mechanisms underlying lipid resuscitation therapy. Reg Anesth Pain Med 43:138–149

    PubMed  Google Scholar 

  32. George MJ (2006) The site of action of epidurally administered opioids and its relevance to postoperative pain management. Anaesthesia 61:659–664

    PubMed  CAS  Google Scholar 

  33. Ghovanloo MR, Aimar K, Ghadiry-Tavi R et al (2016) Physiology and pathophysiology of sodium channel inactivation. Curr Top Membr 78:479–509

    PubMed  Google Scholar 

  34. Goldberg YP, Macfarlane J, Macdonald ML et al (2007) Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 71:311–319

    PubMed  CAS  Google Scholar 

  35. Graf BM (2014) Local anesthetic agents. More and more not only sodium channel blockers. Anaesthesist 63:375

    PubMed  CAS  Google Scholar 

  36. Gupta SP, Gupta JK, Saha RN (1990) A quantitative structure-activity relationship study on the inhibitory effects of local anesthetics on sodium flux, phosphoinositide breakdown, and binding to sodium channels. Drug Des Deliv 6:131–135

    PubMed  CAS  Google Scholar 

  37. Hahnenkamp K, Durieux ME, Hahnenkamp A et al (2006) Local anaesthetics inhibit signalling of human NMDA receptors recombinantly expressed in Xenopus laevis oocytes: role of protein kinase C. Br J Anaesth 96:77–87

    PubMed  CAS  Google Scholar 

  38. Hamilton TW, Athanassoglou V, Mellon S et al (2017) Liposomal bupivacaine infiltration at the surgical site for the management of postoperative pain. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD011419.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hamilton TW, Athanassoglou V, Trivella M et al (2016) Liposomal bupivacaine peripheral nerve block for the management of postoperative pain. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD011476.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  40. Herminghaus A, Wachowiak M, Wilhelm W et al (2011) Intravenös verabreichtes Lidocain zur perioperativen Schmerztherapie. Übersicht und praktische Handlungsempfehlungen. Anaesthesist 60:152–160

    PubMed  CAS  Google Scholar 

  41. Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  42. Hille B (1986) Ionic channels: molecular pores of excitable membranes. Harvey Lect 82:47–69

    PubMed  CAS  Google Scholar 

  43. Hollmann MW, Herroeder S, Kurz KS et al (2004) Time-dependent inhibition of G protein-coupled receptor signaling by local anesthetics. Anesthesiology 100:852–860

    PubMed  CAS  Google Scholar 

  44. Hu D, Onel E, Singla N et al (2013) Pharmacokinetic profile of liposome bupivacaine injection following a single administration at the surgical site. Clin Drug Investig 33:109–115

    PubMed  CAS  Google Scholar 

  45. Hu G, Minshall RD (2009) Regulation of transendothelial permeability by Src kinase. Microvasc Res 77:21–25

    PubMed  CAS  Google Scholar 

  46. Hu T, Liu N, Lv M et al (2016) Lidocaine inhibits HCN currents in rat spinal substantia gelatinosa neurons. Anesth Analg 122:1048–1059

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Hussain N, Van Den Langenbergh T, Sermer C et al (2018) Equivalent analgesic effectiveness between perineural and intravenous dexamethasone as adjuvants for peripheral nerve blockade: a systematic review and meta-analysis. Can J Anaesth 65:194–206

    PubMed  Google Scholar 

  48. Ilfeld BM (2011) Continuous peripheral nerve blocks: a review of the published evidence. Anesth Analg 113:904–925

    PubMed  Google Scholar 

  49. Ilfeld BM (2017) Continuous peripheral nerve blocks: an update of the published evidence and comparison with novel, alternative analgesic modalities. Anesth Analg 124:308–335

    PubMed  CAS  Google Scholar 

  50. Jayaram P, Kennedy DJ, Yeh P et al (2019) Chondrotoxic effects of local anesthetics on human knee articular cartilage: a systematic review. PM R 11:379–400

    PubMed  Google Scholar 

  51. Johnson SM, Saint JBE, Dine AP (2008) Local anesthetics as antimicrobial agents: a review. Surg Infect 9:205–213

    Google Scholar 

  52. Karakaya D, Buyukgoz F, Baris S et al (2001) Addition of fentanyl to bupivacaine prolongs anesthesia and analgesia in axillary brachial plexus block. Reg Anesth Pain Med 26:434–438

    PubMed  CAS  Google Scholar 

  53. Khalil AE, Abdallah NM, Bashandy GM et al (2017) Ultrasound-guided Serratus anterior plane block versus thoracic epidural analgesia for thoracotomy pain. J Cardiothorac Vasc Anesth 31:152–158

    PubMed  Google Scholar 

  54. Kim MY, Oskarsson T, Acharyya S et al (2009) Tumor self-seeding by circulating cancer cells. Cell 139:1315–1326

    PubMed  PubMed Central  Google Scholar 

  55. Kirksey MA, Haskins SC, Cheng J et al (2015) Local anesthetic peripheral nerve block adjuvants for prolongation of analgesia: a systematic qualitative review. PLoS ONE 10:e137312

    PubMed  PubMed Central  Google Scholar 

  56. Knight JB, Schott NJ, Kentor ML et al (2015) Neurotoxicity of common peripheral nerve block adjuvants. Curr Opin Anaesthesiol 28:598–604

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Kopacz DJ, Lacouture PG, Wu D et al (2003) The dose response and effects of dexamethasone on bupivacaine microcapsules for intercostal blockade (T9 to T11) in healthy volunteers. Anesth Analg 96:576–582 (table of contents)

    PubMed  CAS  Google Scholar 

  58. Kranke P, Jokinen J, Pace NL et al (2015) Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd009642.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kreuz PC, Steinwachs M, Angele P (2018) Single-dose local anesthetics exhibit a type-, dose-, and time-dependent chondrotoxic effect on chondrocytes and cartilage: a systematic review of the current literature. Knee Surg Sports Traumatol Arthrosc 26:819–830

    PubMed  Google Scholar 

  60. Kuang MJ, Du Y, Ma JX et al (2017) The efficacy of liposomal bupivacaine using periarticular injection in total knee arthroplasty: a systematic review and meta-analysis. J Arthroplasty 32:1395–1402

    PubMed  Google Scholar 

  61. Lee-Son S, Wang GK, Concus A et al (1992) Stereoselective inhibition of neuronal sodium channels by local anesthetics. Evidence for two sites of action? Anesthesiology 77:324–335

    PubMed  CAS  Google Scholar 

  62. Lee IO, Kim WK, Kong MH et al (2002) No enhancement of sensory and motor blockade by ketamine added to ropivacaine interscalene brachial plexus blockade. Acta Anaesthesiol Scand 46:821–826

    PubMed  CAS  Google Scholar 

  63. Leffler A, Fischer MJ, Rehner D et al (2008) The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. J Clin Invest 118:763–776

    PubMed  PubMed Central  Google Scholar 

  64. Leterrier C, Brachet A, Fache MP et al (2010) Voltage-gated sodium channel organization in neurons: protein interactions and trafficking pathways. Neurosci Lett 486:92–100

    PubMed  CAS  Google Scholar 

  65. Lewis SR, Price A, Walker KJ et al (2015) Ultrasound guidance for upper and lower limb blocks. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006459.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li X, Shaqura M, Mohamed D et al (2018) Pro- versus antinociceptive nongenomic effects of neuronal mineralocorticoid versus glucocorticoid receptors during rat hind paw inflammation. Anesthesiology 128:796–809

    PubMed  CAS  Google Scholar 

  67. Lirk P, Hollmann MW, Strichartz G (2018) The science of local anesthesia: basic research, clinical application, and future directions. Anesth Analg 126:1381–1392

    PubMed  CAS  Google Scholar 

  68. Liu J, Richman KA, Grodofsky SR et al (2015) Is there a dose response of dexamethasone as adjuvant for supraclavicular brachial plexus nerve block? A prospective randomized double-blinded clinical study. J Clin Anesth 27:237–242

    PubMed  CAS  Google Scholar 

  69. Liu S, Carpenter RL, Neal JM (1995) Epidural anesthesia and analgesia. Their role in postoperative outcome. Anesthesiology 82:1474–1506

    PubMed  CAS  Google Scholar 

  70. Ma J, Zhang W, Yao S (2016) Liposomal bupivacaine infiltration versus femoral nerve block for pain control in total knee arthroplasty: a systematic review and meta-analysis. Int J Surg 36:44–55

    PubMed  Google Scholar 

  71. Ma TT, Wang YH, Jiang YF et al (2017) Liposomal bupivacaine versus traditional bupivacaine for pain control after total hip arthroplasty: a meta-analysis. Medicine 96:e7190

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Maciejewski D (2012) Sufentanil in anaesthesiology and intensive therapy. Anaesthesiol Intensive Ther 44:35–41

    PubMed  Google Scholar 

  73. Mantripragada S (2002) A lipid based depot (DepoFoam technology) for sustained release drug delivery. Prog Lipid Res 41:392–406

    PubMed  CAS  Google Scholar 

  74. Mayes J, Davison E, Panahi P et al (2016) An anatomical evaluation of the serratus anterior plane block. Anaesthesia 71:1064–1069

    PubMed  CAS  Google Scholar 

  75. Mcalvin JB, Reznor G, Shankarappa SA et al (2013) Local toxicity from local anesthetic polymeric microparticles. Anesth Analg 116:794–803

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Mishriky BM, George RB, Habib AS (2012) Transversus abdominis plane block for analgesia after Cesarean delivery: a systematic review and meta-analysis. Can J Anaesth 59:766–778

    PubMed  Google Scholar 

  77. Mowat JJ, Mok MJ, Macleod BA et al (1996) Liposomal bupivacaine. Extended duration nerve blockade using large unilamellar vesicles that exhibit a proton gradient. Anesthesiology 85:635–643

    PubMed  CAS  Google Scholar 

  78. Nau C, Vogel W, Hempelmann G et al (1999) Stereoselectivity of bupivacaine in local anesthetic-sensitive ion channels of peripheral nerve. Anesthesiology 91:786–795

    PubMed  CAS  Google Scholar 

  79. Nau C, Wang SY, Strichartz GR et al (1999) Point mutations at N434 in D1-S6 of mu1 Na(+) channels modulate binding affinity and stereoselectivity of local anesthetic enantiomers. Mol Pharmacol 56:404–413

    PubMed  CAS  Google Scholar 

  80. Neal JM (2003) Effects of epinephrine in local anesthetics on the central and peripheral nervous systems: neurotoxicity and neural blood flow. Reg Anesth Pain Med 28:124–134

    PubMed  CAS  Google Scholar 

  81. Neal JM (2016) Ultrasound-guided regional anesthesia and patient safety: update of an evidence-based analysis. Reg Anesth Pain Med 41:195–204

    PubMed  CAS  Google Scholar 

  82. Neal JM, Barrington MJ, Fettiplace MR et al (2018) The third American Society of Regional Anesthesia and pain medicine practice advisory on local anesthetic systemic toxicity: executive summary 2017. Reg Anesth Pain Med 43:113–123

    PubMed  Google Scholar 

  83. Neuburger M, Reisig F, Zimmermann L et al (2009) Infection control in continuous peripheral regional anesthesia. Clinical study on disinfection time and subcutaneous tunneling in interscalene plexus anesthesia. Anaesthesist 58:795–799

    PubMed  CAS  Google Scholar 

  84. Pichler L, Poeran J, Zubizarreta N et al (2018) Liposomal bupivacaine does not reduce inpatient opioid prescription or related complications after knee arthroplasty: a database analysis. Anesthesiology 129:689–699

    PubMed  Google Scholar 

  85. Piegeler T, Votta-Velis EG, Bakhshi FR et al (2014) Endothelial barrier protection by local anesthetics: ropivacaine and lidocaine block tumor necrosis factor-alpha-induced endothelial cell Src activation. Anesthesiology 120:1414–1428

    PubMed  CAS  Google Scholar 

  86. Piegeler T, Werdehausen R (2018) Systemische Effekte der Amid-Lokalanästhetika. Alte Substanzen, neue Wunderwaffen? Anaesthesist 67:525–528

    PubMed  CAS  Google Scholar 

  87. Piper SL, Kramer JD, Kim HT et al (2011) Effects of local anesthetics on articular cartilage. Am J Sports Med 39:2245–2253

    PubMed  Google Scholar 

  88. Popping DM, Elia N, Marret E et al (2009) Clonidine as an adjuvant to local anesthetics for peripheral nerve and plexus blocks: a meta-analysis of randomized trials. Anesthesiology 111:406–415

    PubMed  Google Scholar 

  89. Rasmussen SB, Saied NN, Bowens C Jr. et al (2013) Duration of upper and lower extremity peripheral nerve blockade is prolonged with dexamethasone when added to ropivacaine: a retrospective database analysis. Pain Med 14:1239–1247

    PubMed  Google Scholar 

  90. Richard BM, Ott LR, Haan D et al (2011) The safety and tolerability evaluation of DepoFoam bupivacaine (bupivacaine extended-release liposome injection) administered by incision wound infiltration in rabbits and dogs. Expert Opin Investig Drugs 20:1327–1341

    PubMed  CAS  Google Scholar 

  91. Richard BM, Rickert DE, Newton PE et al (2011) Safety evaluation of EXPAREL (Depofoam Bupivacaine) administered by repeated subcutaneous injection in rabbits and dogs: species comparison. J Drug Deliv. https://doi.org/10.1155/2011/467429

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rosenberg PH, Veering BT, Urmey WF (2004) Maximum recommended doses of local anesthetics: a multifactorial concept. Reg Anesth Pain Med 29:564–575 (discussion 524)

    PubMed  CAS  Google Scholar 

  93. Rubin DS, Matsumoto MM, Weinberg G et al (2018) Local anesthetic systemic toxicity in total joint arthroplasty: incidence and risk factors in the United States from the national inpatient sample 1998–2013. Reg Anesth Pain Med 43:131–137

    PubMed  PubMed Central  Google Scholar 

  94. Saritas A, Sabuncu C (2014) Comparison of clinical effects of prilocaine, dexamethasone added to prilocaine and levobupivacaine on brachial plexus block. J Pak Med Assoc 64:433–436

    PubMed  Google Scholar 

  95. Schafer M, Mousa SA, Shaqura M et al (2019) Hintergrund und aktueller Einsatz von Adjuvanzien für die Regionalanästhesie. Anaesthesist 68:3–14

    PubMed  CAS  Google Scholar 

  96. Schnabel A, Poepping DM, Pogatzki-Zahn EM et al (2011) Efficacy and safety of clonidine as additive for caudal regional anesthesia: a quantitative systematic review of randomized controlled trials. Paediatr Anaesth 21:1219–1230

    PubMed  Google Scholar 

  97. Schwemmer U (2017) Regionalanästhesie: traditio et innovatio. Anaesthesist 66:901–903

    PubMed  CAS  Google Scholar 

  98. Shah J, Votta-Velis EG, Borgeat A (2018) New local anesthetics. Best Pract Res Clin Anaesthesiol 32:179–185

    PubMed  Google Scholar 

  99. Shishido H, Kikuchi S, Heckman H et al (2002) Dexamethasone decreases blood flow in normal nerves and dorsal root ganglia. Spine 27:581–586

    PubMed  Google Scholar 

  100. Simpson JC, Bao X, Agarwala A (2019) Pain management in enhanced recovery after surgery (ERAS) protocols. Clin Colon Rectal Surg 32:121–128

    PubMed  PubMed Central  Google Scholar 

  101. Sun H, Li S, Wang K et al (2018) Do liposomal bupivacaine infiltration and interscalene nerve block provide similar pain relief after total shoulder arthroplasty: a systematic review and meta-analysis. J Pain Res 11:1889–1900

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Swain A, Nag DS, Sahu S et al (2017) Adjuvants to local anesthetics: current understanding and future trends. World J Clin Cases 5:307–323

    PubMed  PubMed Central  Google Scholar 

  103. Tandoc MN, Fan L, Kolesnikov S et al (2011) Adjuvant dexamethasone with bupivacaine prolongs the duration of interscalene block: a prospective randomized trial. J Anesth 25:704–709

    PubMed  Google Scholar 

  104. Tucker GT, Mather LE (1988) Properties, absorbtion and disposition of local anesthetic agents. In: Cousin MJ, Bridenbaugh PO (Hrsg) Neural blockade in clinical anesthesia and management of pain. Lippincott, Philadelphia

    Google Scholar 

  105. Uskova A, O’connor JE (2015) Liposomal bupivacaine for regional anesthesia. Curr Opin Anaesthesiol 28:593–597

    PubMed  CAS  Google Scholar 

  106. Vandepitte C, Kuroda M, Witvrouw R et al (2017) Addition of liposome bupivacaine to bupivacaine HCI versus bupivacaine Hcl alone for Interscalene brachial plexus block in patients having major shoulder surgery. Reg Anesth Pain Med 42:334–341

    PubMed  CAS  Google Scholar 

  107. Verlinde M, Hollmann MW, Stevens MF et al (2016) Local anesthetic-induced neurotoxicity. Int J Mol Sci 17:339

    PubMed  PubMed Central  Google Scholar 

  108. Volk T, Engelhardt L, Spies C et al (2009) A German network for regional anaesthesia of the scientific working group regional anaesthesia within DGAI and BDA. Anasthesiol Intensivmed Notfallmed Schmerzther 44:778–780

    PubMed  Google Scholar 

  109. Volk T, Graf BM, Gogarten W et al (2009) Empfehlungen zur Lipidbehandlung bei der Intoxikation mit Lokalanästhetika. Anaesth Intensivmed 50:698–702

    Google Scholar 

  110. Volk T, Kubulus C (2019) Adjuvanzien für die Regionalanästhesie – wie lange ist lange genug? Anaesthesist 68:1–2

    PubMed  CAS  Google Scholar 

  111. Volk T, Kubulus C (2017) Regionalanästhesie – ändern sich die Standards? Anaesthesist 66:904–909

    PubMed  CAS  Google Scholar 

  112. Weibel S, Jelting Y, Pace NL et al (2018) Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery in adults. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009642.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  113. Weinberg GL (2010) Treatment of local anesthetic systemic toxicity (LAST). Reg Anesth Pain Med 35:188–193

    PubMed  CAS  Google Scholar 

  114. Werdehausen R, Kremer D, Brandenburger T et al (2012) Lidocaine metabolites inhibit glycine transporter 1: a novel mechanism for the analgesic action of systemic lidocaine? Anesthesiology 116:147–158

    PubMed  CAS  Google Scholar 

  115. Wiesmann T, Borntrager A, Steinfeldt T et al (2013) Helsinki Declaration on Patient Safety in Anaesthesiology—SOP for local anesthetics intoxication. Anasthesiol Intensivmed Notfallmed Schmerzther 48:32–35

    PubMed  Google Scholar 

  116. Wiesmann T, Volk T, Steinfeldt T (2016) Glucocorticoide als Adjuvanz in der peripheren Regionalanästhesie. Anaesthesist 65:295–298

    PubMed  CAS  Google Scholar 

  117. Williams BA, Schott NJ, Mangione MP et al (2014) Perineural dexamethasone and multimodal perineural analgesia: how much is too much? Anesth Analg 118:912–914

    PubMed  Google Scholar 

  118. Wolff M, Schnobel-Ehehalt R, Muhling J et al (2014) Mechanisms of lidocaine’s action on subtypes of spinal dorsal horn neurons subject to the diverse roles of Na(+) and K(+) channels in action potential generation. Anesth Analg 119:463–470

    PubMed  CAS  Google Scholar 

  119. Yayac M, Li WT, Ong AC et al (2019) The efficacy of liposomal bupivacaine over traditional local anesthetics in Periarticular infiltration and regional anesthesia during total knee arthroplasty: a systematic review and meta-analysis. J Arthroplasty 34:2166–2183

    PubMed  Google Scholar 

  120. Zhang X, Yang Q, Zhang Z (2017) The efficiency and safety of local liposomal bupivacaine infiltration for pain control in total hip arthroplasty: a systematic review and meta-analysis. Medicine 96:e8433

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Zink W, Graf BM (2004) Local anesthetic myotoxicity. Reg Anesth Pain Med 29:333–340

    PubMed  CAS  Google Scholar 

  122. Zink W, Graf BM (2007) Lokalanästhetikatoxizität – Relevanz empfohlener Maximaldosen? Anaesth Intensivmed 48:182–205

    Google Scholar 

  123. Zink W, Graf BM (2003) Toxikologie der Lokalanästhetika. Anaesthesist 52:1102–1123

    PubMed  CAS  Google Scholar 

  124. Zink W, Sinner B, Zausig Y et al (2007) Myotoxizität von Lokalanästhetika. Anaesthesist 56:118–127

    PubMed  CAS  Google Scholar 

  125. Zink W, Ulrich M (2018) Klinische Anwendung und Toxizität von Lokalanästhetika. Anaesth Intensivmed 59:716–728

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zink DEAA.

Ethics declarations

Interessenkonflikt

W. Zink und T. Steinfeldt geben an, dass kein Interessenkonflikt besteht. T. Wiesmann erhält Vortragshonorare für Fa. Pajunk und Fa. Vygon.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zink, W., Steinfeldt, T. & Wiesmann, T. Bestandsaufnahme der Lokalanästhetika 2020. Anaesthesist 69, 301–313 (2020). https://doi.org/10.1007/s00101-020-00740-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-020-00740-7

Schlüsselwörter

Keywords

Navigation