Der Herzkathetertisch ist nicht der OP-Tisch

Intraindividueller Vergleich der pulmonalarteriellen Druckwerte



Bei herzchirurgischen Operationen ist ein aufwendiges Monitoring erforderlich. Wegen der Invasivität dieser Maßnahmen muss für jeden Patienten individuell eine Nutzen-Risiko-Abwägung erfolgen, von welchem Monitoring er profitiert und welches vielleicht sogar schädlich ist. Dies gilt insbesondere für den Einsatz des Pulmonalarterienkatheters (PAK), der in ausgewählten Fällen gerechtfertigt erscheint. So stellt die präoperative Diagnose „Pulmonalishochdruck“ in den S3-Leitlinien der DGAI eine Indikation zum perioperatives Monitoring mittels PAK dar.


In dieser retrospektiven Studie verglichen wir bei herzchirurgischen Patienten mit präoperativ erhöhten pulmonalarteriellen Druckwerten die Werte aus der Herzkatheteruntersuchung mit den intra- und postoperativ mittels eines PAK gemessenen.


Die prä- und intraoperativ bestimmten pulmonalarteriellen Druckwerte unterscheiden sich signifikant voneinander; die postoperativen Druckwerte entsprechen den intraoperativen. Das Verhältnis von systemischem zu pulmonalarteriellem Druck zeigt keine Unterschiede zu unterschiedlichen Messzeitpunkten.


Da sich die prä- und intraoperativ bestimmten pulmonalarteriellen Druckwerte unterscheiden, schlagen wir vor, intraoperativ zunächst echokardiographisch den pulmonalarteriellen Druck zu bestimmen und auf weitere Hinweise für einen pulmonalen Hypertonus zu achten, um dann individuell die Indikation für einen PAK zu prüfen.


Pulmonaler Hypertonus  Pulmonalarterienkatheter Transösophageale Echokardiographie Rechtsherzkatheter Pulmonalarterieller Druck 

The heart catheter table is not the operating table

Intraindividual comparison of pulmonary artery pressures



Patients undergoing cardiac surgery need extensive and invasive monitoring, which needs to be individually adapted for each patient and requires a diligent risk-benefit analysis. The use of a pulmonary artery catheter (PAC) seems to be justifiable in certain cases; therefore, the preoperative diagnosis of pulmonary hypertension represents an indication for perioperative monitoring with PAC in the S3 guidelines of the German Society for Anesthesiology and Intensive Care Medicine (DGAI). In many cases, however, this preoperative diagnosis cannot be confirmed intraoperatively.


We wanted to find out whether this is just an impression or whether there actually are significant differences between preoperative, intraoperative and postoperative pulmonary artery pressures.

Material and methods

After obtaining ethical approval, we retrospectively compared the pulmonary pressures of cardiac surgery patients with an elevated pulmonary pressure during preoperative right heart catheterization with those obtained intraoperatively and postoperatively by means of a PAC. All patients with a preoperatively documented pulmonary artery pressure of 40 mmHg or above and an intraoperative use of a PAC during a 4-year period were included. Exclusion criteria were intracardiac shunts, cardiogenic shock, emergency procedures, pulmonary hypertension of non-cardiac origin and a time span of more than 1 year between right heart catheterization and surgery. We included 90 patients.


In the whole group and in the subgroups (according to diagnosis, time elapsed between heart catheterization and operation and pulmonary pressure), there were significant differences between preoperative and intraoperative pulmonary and systemic pressures. Systemic and pulmonary artery pressures were significantly higher during preoperative catheterization than intraoperatively. The systemic systolic pressure/systolic pulmonary pressure ratio, however, remained constant. The intraoperative and postoperative systemic and pulmonary artery pressures showed no significant differences. As a normal ejection fraction does not exclude heart failure with preserved ejection fraction and as we did not have any information on this condition, we did not group the patients according to the ejection fraction.


An elevated pulmonary pressure obtained preoperatively during right heart catheterization is not indicative of an elevated pulmonary pressure either intraoperatively or postoperatively. There are various explanations for the differences (e.g., different physiological and pathophysiological settings, such as sedation with potential hypercapnia versus anesthesia with vasodilation when measured; newly prescribed medication coming into effect between the right heart catheterization and surgery; intraoperative positioning). Even though the inherent risks of a PAC seem to be low, we recommend refraining from using a PAC in patients with a once documented elevated pulmonary pressure by default. As an alternative we suggest estimating the pulmonary pressure by transesophageal echocardiography (TEE) as an aid to decide whether the patient will benefit from the use of a PAC. Especially if it is not possible to identify tricuspid valve regurgitation for determining the peak gradient, it is helpful to check for additional signs of pulmonary hypertension. But we also have to bear in mind that in the postoperative period only a PAC can provide continuous measurement of pulmonary pressure.


Pulmonary hypertension Pulmonary artery catheter Transesophageal echocardiography Right heart catheter Pulmonary artery pressure 


Einhaltung ethischer Richtlinien


M. U. Ziegler und H. Reinelt geben an, dass kein Interessenkonflikt besteht.

Die ethischen Leitlinien wurden eingehalten und die Studie durch die Ethikkommission der Universität Ulm genehmigt.


  1. 1.
    American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization (2003) Practice guidelines for pulmonary artery catheterization: an updated report by the American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization. Anesthesiology 4:988–1014Google Scholar
  2. 2.
    Abreu AR, Campos MA, Krieger BP (2004) Pulmonary artery rupture induced by a pulmonary artery catheter: a case report. J Intensive Care Med 5:291–296CrossRefGoogle Scholar
  3. 3.
    Aggarwal N, Kupfer Y, Yoon TS et al (2013) Pulmonary artery catheter coiled in the main pulmonary artery trunk. BMJ Case Rep. Google Scholar
  4. 4.
    Akca B, Erdil N, Disli OM, Donmez K, Erdil F, Colak MC, Battaloglu B (2015) Coronary bypass surgery in patients with pulmonary hypertension: assessment of early and long term results. Ann Thorac Cardiovasc Surg:9. PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bossert T, Gummert JF, Bittner HB, Barten M, Walther T, Falk V, Mohr FW (2006) Swan-Ganz catheter-induced severe complications in cardiac surgery: right ventricular perforation, knotting, and rupture of a pulmonary artery. J Card Surg 3:292–295CrossRefGoogle Scholar
  6. 6.
    Bradford CN, Ely DR, Raizada MK (2010) Targeting the vasoprotective axis of the renin-angiotensin system: a novel strategic approach to pulmonary hypertensive therapy. Curr Hypertens Rep. PubMedPubMedCentralGoogle Scholar
  7. 7.
    Carl M, Alms A, Braun J et al (2010) S3 guidelines for intensive care in cardiac surgery patients: hemodynamic monitoring and cardiocirculatory system. Ger Med Sci. PubMedPubMedCentralGoogle Scholar
  8. 8.
    Chemla D, Castelain V, Humbert M et al (2004) New formula for predicting mean pulmonary artery pressure using systolic pulmonary artery pressure. Chest 4:1313–1317CrossRefGoogle Scholar
  9. 9.
    Chittock DR, Dhingra VK, Ronco J et al (2004) Severity of illness and risk of death associated with pulmonary artery catheter use. Crit Care Med 4:911–915CrossRefGoogle Scholar
  10. 10.
    Côté G, Denault A (2008) Transesophageal echocardiography-related complications. Can J Anaesth. PubMedGoogle Scholar
  11. 11.
    Cowie B, Kluger R, Rex S, Missant C (2015) The utility of transoesophageal echocardiography for estimating right ventricular systolic pressure. Anaesthesia. PubMedGoogle Scholar
  12. 12.
    German Society for Thoracic and Cardiovascular Surgery, German Society of Anaesthesiology and Intensive Care Medicine, Carl M, Alms A, Braun J, Dongas A et al (2007) Guidelines for intensive care in cardiac surgery patients: haemodynamic monitoring and cardio-circulatory treatment guidelines of the German Society for Thoracic and Cardiovascular Surgery and the German Society of Anaesthesiology and Intensive Care Medicine. Thorac Cardiovasc Surg 2:130–148Google Scholar
  13. 13.
    Gore JM, Goldberg RJ, Spodick DH et al (1987) A community-wide assessment of the use of pulmonary artery catheters in patients with acute myocardial infarction. Chest 92(4):721–727CrossRefPubMedGoogle Scholar
  14. 14.
    Greiner S, Jud A, Aurich M et al (2014) Reliability of noninvasive assessment of systolic pulmonary artery pressure by Doppler echocardiography compared to right heart catheterization: analysis in a large patient population. J Am Heart Assoc. PubMedPubMedCentralGoogle Scholar
  15. 15.
    Kallmeyer IJ, Collard CD, Fox JA et al (2001) The safety of intraoperative transesophageal echocardiography: a case series of 7200 cardiac surgical patients. Anesth Analg 5:1126–1130CrossRefGoogle Scholar
  16. 16.
    Kara T, Narkiewicz K, Somers VK (2003) Chemoreflexes—physiology and clinical implications. Acta Physiol Scand 3:377–384CrossRefGoogle Scholar
  17. 17.
    Lennon MJ, Gibbs NM, Weightman WM et al (2006) Transesophageal echocardiography-related gastrointestinal complications in cardiac surgical patients. J Cardiothorac Vasc Anesth 3:379–384Google Scholar
  18. 18.
    Piercy M, McNicol L, Dinh DT et al (2009) Major complications related to the use of transesophageal echocardiography in cardiac surgery. J Cardiothorac Vasc Anesth. PubMedGoogle Scholar
  19. 19.
    Prins KW, Thenappan T (2016) World health organization group I pulmonary hypertension: epidemiology and pathophysiology. Cardiol Clin. PubMedPubMedCentralGoogle Scholar
  20. 20.
    Qi F, Ogawa K, Tokinaga Y et al (2009) Volatile anesthetics inhibit angiotensin II-induced vascular contraction by modulating myosin light chain phosphatase inhibiting protein, CPI-17 and regulatory subunit, MYPT1 phosphorylation. Anesth Analg. PubMedGoogle Scholar
  21. 21.
    Rajaram SS, Desai NK, Kalra A et al (2013) Pulmonary artery catheters for adult patients in intensive care. Cochrane Database. Google Scholar
  22. 22.
    Rich S, D’Alonzo GE, Dantzker DR et al (1985) Magnitude and implications of spontaneous hemodynamic variability in primary pulmonary hypertension. Am J Cardiol 55(1):159–163CrossRefPubMedGoogle Scholar
  23. 23.
    Sainathan S, Andaz S (2013) A systematic review of transesophageal echocardiography-induced esophageal perforation. Echocardiography:9. PubMedGoogle Scholar
  24. 24.
    Silverton N, Meineri M, Djaiani G (2015) The controversy of right ventricular systolic pressure: is it time to abandon the pulmonary artery catheter? Anaesthesia. PubMedGoogle Scholar
  25. 25.
    Simonneau G, Gatzoulis MA, Adatia I et al (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. Google Scholar
  26. 26.
    Soliman D, Bolliger D, Skarvan K, Kaufmann BA, Lurati Buse G, Seeberger MD (2015) Intra-opertive assessment of pulmonary artery pressure by transoesophageal echocardiography. Anaesthesia. PubMedGoogle Scholar
  27. 27.
    Trottier SJ, Taylor RW (1997) Physicians’ attitudes toward and knowledge of the pulmonary artery catheter: Society of Critical Care Medicine membership survey. New Horiz 3:201–206Google Scholar
  28. 28.
    Yock PG, Popp RL (1984) Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 4:657–662CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für Herz‑, Thorax‑, Gefäßchirurgie, Abteilung KardioanästhesieUniversitätsklinik UlmUlmDeutschland

Personalised recommendations