Der Anaesthesist

, Volume 66, Issue 3, pp 153–167 | Cite as

Stand der Wissenschaft in der Flüssigkeits- und Volumentherapie

Ein anwenderfreundliches Stufenkonzept
  • M. Rehm
  • N. Hulde
  • T. Kammerer
  • A. S. Meidert
  • K. Hofmann-Kiefer
Leitthema

Zusammenfassung

Eine adäquate intraoperative Infusionstherapie ist wesentlich für das perioperative Outcome eines Patienten. Sowohl Hypo- als auch Hypervolämie können zu einer erhöhten Rate perioperativer Komplikationen führen und somit zu einem schlechteren Behandlungsergebnis. Daher sollte die perioperative Flüssigkeitstherapie bedarfsgerecht und zielorientiert durchgeführt werden. Das Hauptziel ist die präoperative Normovolämie durch eine rationale Infusionstherapie aufrechtzuerhalten. Perioperative Flüssigkeitsverluste sollten dabei von Volumenverlusten durch chirurgische Blutungen oder Proteinverlusten ins Interstitium differenziert werden. Flüssigkeitsverluste via Urinexkretion oder Perspiratio insensibilis (0,5–1,0 ml/kg/h) sollten 1:1 mit balancierten, isoonkotischen, kristalloiden Infusionslösungen ausgeglichen werden. Volumentherapie, Stufe 1: Intraoperative Volumenverluste bis zu einem Blutverlust von 20 % des Gesamtblutvolumens werden mit balancierten Kristalloiden im Verhältnis 4–5:1 ausgeglichen. Stufe 2: Darüber hinausgehende Blutverluste sind im Verhältnis 1:1 mit isoonkotischen Kolloiden (bevorzugt balanciert) zu behandeln. In dieser Hinsicht und unter Beachtung der Kontraindikationen wie Sepsis, Verbrennungen, kritische Erkrankung (i. d. R. Patienten auf Intensivstation), eingeschränkte Nierenfunktion oder Nierenersatztherapie, intrakranielle Blutung oder schwere Gerinnungsstörungen können perioperativ auch künstliche Kolloide, wie z. B. HES, zum Volumenersatz verwendet werden. Stufe 3: Wenn die Indikation zur Gabe von Fremdblut besteht, erfolgt ein differenzierter Einsatz von Blut und Blutprodukten.

Schlüsselwörter

Infusionen Kolloid Hydroxyethylstärke Kristalloid Perioperative Volumenbilanz 

State of the art in fluid and volume therapy

A user-friendly staged concept

Abstract

Adequate fluid therapy is highly important for the perioperative outcome of our patients. Both, hypovolemia and hypervolemia can lead to an increase in perioperative complications and can impair the outcome. Therefore, perioperative infusion therapy should be target-oriented. The main target is to maintain the patient’s preoperative normovolemia by using a sophisticated, rational infusion strategy.

Perioperative fluid losses should be discriminated from volume losses (surgical blood loss or interstitial volume losses containing protein). Fluid losses as urine or perspiratio insensibilis (0.5–1.0 ml/kg/h) should be replaced by balanced crystalloids in a ratio of 1:1. Volume therapy step 1: Blood loss up to a maximum value of 20% of the patient’s blood volume should be replaced by balanced crystalloids in a ratio of 4(-5):1. Volume therapy step 2: Higher blood losses should be treated by using iso-oncotic, preferential balanced colloids in a ratio of 1:1. For this purpose hydroxyethyl starch can also be used perioperatively if there is no respective contraindication, such as sepsis, burn injuries, critically ill patients, renal impairment or renal replacement therapy, and severe coagulopathy. Volume therapy step 3: If there is an indication for red cell concentrates or coagulation factors, a differentiated application of blood and blood products should be performed.

Keywords

Infusions Colloid Hydroxyethyl starch Crystalloid Perioperative volume balance 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Rehm leitet aktuell 2 klinische Studien, eine wird von CSL Behring, eine von Fresenius Kabi unterstützt. Er hat in den letzten 2 Jahren von Pharmafirmen keine Reisekostenerstattungen oder Honorare erhalten. N. Hulde, T. Kammerer, A. S. Meidert und K. Hofmann-Kiefer geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Brandstrup B, Tonnesen H, Beier-Holgersen R et al (2003) Effects of intravenous fluid restriction on postoperative complications: Comparison of two perioperative fluid regimens: A randomized assessor-blinded multicenter trial. Ann Surg 238:641–648CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jacob M, Chappell D (2009) Rehm M The ‘third space’ – fact or fiction? Best Pract Res Clin Anaesthesiol 23:145–157CrossRefPubMedGoogle Scholar
  3. 3.
    Holte K, Kehlet H (2006) Fluid therapy and surgical outcomes in elective surgery: A need for reassessment in fast-track surgery. J Am Coll Surg 202:971–989CrossRefPubMedGoogle Scholar
  4. 4.
    Lobo DN, Bostock KA, Neal KR, Perkins AC, Rowlands BJ, Allison SP (2002) Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: A randomised controlled trial. Lancet 359:1812–1818CrossRefPubMedGoogle Scholar
  5. 5.
    Nisanevich V, Felsenstein I, Almogy G, Weissman C, Einav S, Matot I (2005) Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 103:25–32CrossRefPubMedGoogle Scholar
  6. 6.
    Parquin F, Marchal M, Mehiri S, Herve P, Lescot B (1996) Post-pneumonectomy pulmonary edema: analysis and risk factors. Eur J Cardiothorac Surg 10:929–932 (discussion 33)CrossRefPubMedGoogle Scholar
  7. 7.
    Glassford NJ, Myles P, Bellomo R (2012) The Australian approach to peri-operative fluid balance. Curr Opin Anaesthesiol 25:102–110CrossRefPubMedGoogle Scholar
  8. 8.
    Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M (2008) A rational approach to perioperative fluid management. Anesthesiology 109:723–740CrossRefPubMedGoogle Scholar
  9. 9.
    Jacob M, Chappell D, Conzen P, Finsterer U, Rehm M (2008) Blood volume is normal after pre-operative overnight fasting. Acta Anaesthesiol Scand 52:522–529CrossRefPubMedGoogle Scholar
  10. 10.
    Fachgesellschaften_AAWM (2014) Intravasle Volumentherapie beim Erwachsenen. http://www.awmf.org/leitlinien/detail/ll/001-020.html (Registernummer 001–020)Google Scholar
  11. 11.
    Langer T, Conrad S, Fishman L et al (2012) Interessenkonflikte bei Autoren medizinischer Leitlinien. Eine Analyse der Leitlinien deutscher Fachgesellschaften 2009–2011. Dtsch Arztebl 109:836–842Google Scholar
  12. 12.
    Marckmann G (2015) Alkoholabstinenz vor Lebertransplantation: Contra. Dtsch Arztebl 112(49):A 2079Google Scholar
  13. 13.
    Rehm M, Haller M, Brechtelsbauer H, Akbulut C, Finsterer U (1998) Extra protein loss not caused by surgical bleeding in patients with ovarian cancer. Acta Anaesthesiol Scand 42:39–46CrossRefPubMedGoogle Scholar
  14. 14.
    Rehm M, Haller M, Orth V et al (2001) Changes in blood volume and hematocrit during acute preoperative volume loading with 5 % albumin or 6 % hetastarch solutions in patients before radical hysterectomy. Anesthesiology 95:849–856CrossRefPubMedGoogle Scholar
  15. 15.
    Jacob M, Chappell D, Hofmann-Kiefer K, Conzen P, Peter K, Rehm M (2007) Determinants of insensible fluid loss. Perspiration, protein shift and endothelial glycocalyx. Anaesthesist 56(747–58):60–64Google Scholar
  16. 16.
    Rehm M, Orth VH, Kreimeier U et al (2001) Changes in blood volume during acute normovolemic hemodilution with 5 % albumin or 6 % hydroxyethylstarch and intraoperative retransfusion. Anaesthesist 50:569–579CrossRefPubMedGoogle Scholar
  17. 17.
    Rehm M, Orth V, Kreimeier U et al (2000) Changes in intravascular volume during acute normovolemic hemodilution and intraoperative retransfusion in patients with radical hysterectomy. Anesthesiology 92:657–664CrossRefPubMedGoogle Scholar
  18. 18.
    Jacob M, Rehm M, Orth V et al (2003) Exact measurement of the volume effect of 6 % hydoxyethyl starch 130/0.4 (Voluven) during acute preoperative normovolemic hemodilution. Anaesthesist 52:896–904CrossRefPubMedGoogle Scholar
  19. 19.
    Rehm MHM, Brechtelsbauer H, Akbulut C, Finsterer U (1998) Changes in plasma volume in immediate pre- and postoperative periods in patients major gynecologic surgery. Infusionsther Transfusionsmed 25:222–228Google Scholar
  20. 20.
    Rehm M, Orth VH, Weninger E et al (2001) Acute “normovolemic” hemodilution with 3.5 % polygel (Haemaccel) for patients in the Wertheim-Meigs-operation. Blood loss of 87 % blood volume without perioperative blood transfusion. Anaesthesist 50:580–584CrossRefPubMedGoogle Scholar
  21. 21.
    Jacob M, Chappell D, Hofmann-Kiefer K et al (2012) The intravascular volume effect of Ringer’s lactate is below 20 %: a prospective study in humans. Crit Care 16:R86CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jacob M, Bruegger D, Rehm M et al (2007) The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels. Cardiovasc Res 73:575–586CrossRefPubMedGoogle Scholar
  23. 23.
    Hu X, Adamson RH, Liu B, Curry FE, Weinbaum S (2000) Starling forces that oppose filtration after tissue oncotic pressure is increased. Am J Physiol Heart Circ Physiol 279:H1724–36PubMedGoogle Scholar
  24. 24.
    Jacob M, Chappell D, Rehm M (2007) Clinical update: Perioperative fluid management. Lancet 369:1984–1986CrossRefPubMedGoogle Scholar
  25. 25.
    Bruegger D, Jacob M, Rehm M et al (2005) Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 289:H1993–H1999CrossRefPubMedGoogle Scholar
  26. 26.
    Bruegger D, Schwartz L, Chappell D et al (2011) Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on- and off-pump coronary artery bypass surgery. Basic Res Cardiol 106:1111–1121CrossRefPubMedGoogle Scholar
  27. 27.
    Chappell D, Bruegger D, Potzel J et al (2014) Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care 18:538CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wiedermann CJ (2014) Joannidis M Accumulation of hydroxyethyl starch in human and animal tissues: A systematic review. Intensive Care Med 40:160–170CrossRefPubMedGoogle Scholar
  29. 29.
    Nieuwdorp M, Meuwese MC, Vink H, Hoekstra JB, Kastelein JJ, Stroes ES (2005) The endothelial glycocalyx: A potential barrier between health and vascular disease. Curr Opin Lipidol 16:507–511CrossRefPubMedGoogle Scholar
  30. 30.
    Scheingraber S, Rehm M, Sehmisch C, Finsterer U (1999) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 90:1265–1270CrossRefPubMedGoogle Scholar
  31. 31.
    Orbegozo Cortes D, Rayo Bonor A, Vincent JL (2014) Isotonic crystalloid solutions: a structured review of the literature. Br J Anaesth 112:968–981CrossRefPubMedGoogle Scholar
  32. 32.
    Shaw AD, Bagshaw SM, Goldstein SL et al (2012) Major complications, mortality, and resource utilization after open abdominal surgery: 0.9 % saline compared to Plasma-Lyte. Ann Surg 255:821–829CrossRefPubMedGoogle Scholar
  33. 33.
    Young P, Bailey M, Beasley R et al (2015) Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: The SPLIT randomized clinical trial. JAMA 314:1701–1710CrossRefPubMedGoogle Scholar
  34. 34.
    Senn A et al (2017) Chloride content of fluids used for large-volume resuscitation is associated with reduced survival. Crit Care Med 45:e146–e153Google Scholar
  35. 35.
    O’Malley CM, Frumento RJ, Hardy MA et al (2005) A randomized, double-blind comparison of lactated Ringer’s solution and 0.9 % NaCl during renal transplantation. Anesth Analg 100:1518–1524CrossRefPubMedGoogle Scholar
  36. 36.
    Potura E, Lindner G, Biesenbach P et al (2015) An acetate-buffered balanced crystalloid versus 0.9 % saline in patients with end-stage renal disease undergoing cadaveric renal transplantation: a prospective randomized controlled trial. Anesth Analg 120:123–129CrossRefPubMedGoogle Scholar
  37. 37.
    Vincent JL, Dubois MJ, Navickis RJ, Wilkes MM (2003) Hypoalbuminemia in acute illness: is there a rationale for intervention? A meta-analysis of cohort studies and controlled trials. Ann Surg 237:319–334PubMedPubMedCentralGoogle Scholar
  38. 38.
    Dubois MJ, Orellana-Jimenez C, Melot C et al (2006) Albumin administration improves organ function in critically ill hypoalbuminemic patients: A prospective, randomized, controlled, pilot study. Crit Care Med 34:2536–2540CrossRefPubMedGoogle Scholar
  39. 39.
    Haynes GR, Navickis RJ, Wilkes MM (2003) Albumin administration – what is the evidence of clinical benefit? A systematic review of randomized controlled trials. Eur J Anaesthesiol 20:771–793CrossRefPubMedGoogle Scholar
  40. 40.
    Martin GS, Moss M, Wheeler AP, Mealer M, Morris JA, Bernard GR (2005) A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med 33:1681–1687CrossRefPubMedGoogle Scholar
  41. 41.
    Vincent JL (2009) Relevance of albumin in modern critical care medicine. Best Pract Res Clin Anaesthesiol 23:183–191CrossRefPubMedGoogle Scholar
  42. 42.
    Injuries Group, Albumin R (1998) Human albumin administration in critically ill patients: Systematic review of randomised controlled trials. BMJ 317:235–240CrossRefGoogle Scholar
  43. 43.
    Investigators SS, Finfer S, Bellomo R et al (2006) Effect of baseline serum albumin concentration on outcome of resuscitation with albumin or saline in patients in intensive care units: analysis of data from the saline versus albumin fluid evaluation (SAFE) study. BMJ 333:1044CrossRefGoogle Scholar
  44. 44.
    Finfer S, Bellomo R, Boyce N et al (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256CrossRefPubMedGoogle Scholar
  45. 45.
    Caironi P, Tognoni G, Masson S et al (2014) Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med 370:1412–1421CrossRefPubMedGoogle Scholar
  46. 46.
    Charpentier JJ-PM (2011) Efficacy and tolerance of hyperoncotic albumin administration in septic shock patients: The EARSS study. Intensive Care Med 37(Suppl.2):115/0438Google Scholar
  47. 47.
    Wiedermann CJ, Joannidis M (2014) Albumin replacement in severe sepsis or septic shock. N Engl J Med 371:83CrossRefPubMedGoogle Scholar
  48. 48.
    Patel A, Laffan MA, Waheed U, Brett SJ (2014) Randomised trials of human albumin for adults with sepsis: Systematic review and meta-analysis with trial sequential analysis of all-cause mortality. BMJ 349:g4561CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wiedermann CJ, Dunzendorfer S, Gaioni LU, Zaraca F, Joannidis M (2010) Hyperoncotic colloids and acute kidney injury: A meta-analysis of randomized trials. Crit Care 14:R191CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Maitland K, Kiguli S, Opoka RO et al (2011) Mortality after fluid bolus in African children with severe infection. N Engl J Med 364:2483–2495CrossRefPubMedGoogle Scholar
  51. 51.
    Rehm M, Paptistella M, Dieterich HJ (2012) Volumenersatzlösungen, 3. Aufl. Springer, Berlin, HeidelbergGoogle Scholar
  52. 52.
    Vincent JL, De Backer D, Wiedermann CJ (2016) Fluid management in sepsis: The potential beneficial effects of albumin. J Crit Care 35:161–167CrossRefPubMedGoogle Scholar
  53. 53.
    Delaney AP, Dan A, McCaffrey J, Finfer S (2011) The role of albumin as a resuscitation fluid for patients with sepsis: A systematic review and meta-analysis. Crit Care Med 39:386–391CrossRefPubMedGoogle Scholar
  54. 54.
    Brunkhorst FM, Engel C, Bloos F et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139CrossRefPubMedGoogle Scholar
  55. 55.
    Perner A, Haase N, Guttormsen AB et al (2012) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 367:124–134CrossRefPubMedGoogle Scholar
  56. 56.
    Myburgh JA, Finfer S, Bellomo R et al (2012) Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 367:1901–1911CrossRefPubMedGoogle Scholar
  57. 57.
    Guidet B, Martinet O, Boulain T et al (2012) Assessment of hemodynamic efficacy and safety of 6 % hydroxyethylstarch 130/0.4 vs. 0.9 % NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care 16:R94CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Dart AB, Mutter TC, Ruth CA, Taback SP (2010) Hydroxyethyl starch (HES) versus other fluid therapies: Effects on kidney function. Cochrane Database Syst Rev CD007594. doi:10.1002/14651858PubMedGoogle Scholar
  59. 59.
    Wiedermann CJ (2008) Systematic review of randomized clinical trials on the use of hydroxyethyl starch for fluid management in sepsis. BMC Emerg Med 8:1CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zarychanski R, Turgeon AF, Fergusson DA et al (2009) Renal outcomes and mortality following hydroxyethyl starch resuscitation of critically ill patients: systematic review and meta-analysis of randomized trials. Open Med 3:e196–209 (ATTENTION: The analysis and conclusions of this article are being revised by the authors. This is due to the journal Anesthesia and Analgesia’s retraction of a paper by Dr. Joachim Boldt, an author in seven of the studies analyzed in this review. As such, the editors of Open Medicine recommend interpreting this review with extreme caution until Zarychanski et al. publish a new analysis and interpretation in Open Medicine. For more information, see Anesthesia and Analgesia’s press release)PubMedPubMedCentralGoogle Scholar
  61. 61.
    Rehm M (2013) Limited applications for hydroxyethyl starch: Background and alternative concepts. Anaesthesist 62:644–655CrossRefPubMedGoogle Scholar
  62. 62.
    European Medicines Agency. Assessement report for solutions for infusion containing hydroxyethyl starch. EMA/667553/2013Google Scholar
  63. 63.
    Meybohm P, Van Aken H, De Gasperi A et al (2013) Re-evaluating currently available data and suggestions for planning randomised controlled studies regarding the use of hydroxyethyl starch in critically ill patients – a multidisciplinary statement. Crit Care 17:R166CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Gillies MA, Habicher M, Jhanji S et al (2014) Incidence of postoperative death and acute kidney injury associated with i. v. 6 % hydroxyethyl starch use: systematic review and meta-analysis. Br J Anaesth 112:25–34CrossRefPubMedGoogle Scholar
  65. 65.
    Kammerer T, Klug F, Schwarz M et al (2015) Comparison of 6 % hydroxyethyl starch and 5 % albumin for volume replacement therapy in patients undergoing cystectomy (CHART): Study protocol for a randomized controlled trial. Trials 16:384CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Rasmussen KC, Secher NH, Pedersen T (2016) Effect of perioperative crystalloid or colloid fluid therapy on hemorrhage, coagulation competence, and outcome: A systematic review and stratified meta-analysis. Medicine (Baltimore) 95:e4498CrossRefGoogle Scholar
  67. 67.
    Moeller C, Fleischmann C, Thomas-Rueddel D et al (2016) How safe is gelatin? A systematic review and meta-analysis of gelatin-containing plasma expanders vs crystalloids and albumin. J Crit Care 35:75–83CrossRefPubMedGoogle Scholar
  68. 68.
    Thomas-Rueddel DO, Vlasakov V, Reinhart K et al (2012) Safety of gelatin for volume resuscitation – a systematic review and meta-analysis. Intensive Care Med 38:1134–1142CrossRefPubMedGoogle Scholar
  69. 69.
    Perel P, Roberts I (2012) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev CD000567. doi: 10.1002/14651858 PubMedGoogle Scholar
  70. 70.
    Annane D, Siami S, Jaber S et al (2013) Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: The CRISTAL randomized trial. JAMA 310:1809–1817CrossRefPubMedGoogle Scholar
  71. 71.
    Holte K, Sharrock NE, Kehlet H (2002) Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth 89:622–632CrossRefPubMedGoogle Scholar
  72. 72.
    Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317:1098PubMedGoogle Scholar
  73. 73.
    Pearson TC, Guthrie DL, Simpson J et al (1995) Interpretation of measured red cell mass and plasma volume in adults: Expert Panel on Radionuclides of the International Council for Standardization in Haematology. Br J Haematol 89:748–756CrossRefPubMedGoogle Scholar
  74. 74.
    Jacob M, Saller T, Chappell D, Rehm M, Welsch U, Becker BF (2013) Physiological levels of A‑, B‑ and C‑type natriuretic peptide shed the endothelial glycocalyx and enhance vascular permeability. Basic Res Cardiol 108:347CrossRefPubMedGoogle Scholar
  75. 75.
    Jacob M, Bruegger D, Conzen P, Becker BF, Finsterer U, Rehm M (2005) Development and validation of a mathematical algorithm for quantifying preoperative blood volume by means of the decrease in hematocrit resulting from acute normovolemic hemodilution. Transfusion 45:562–571CrossRefPubMedGoogle Scholar
  76. 76.
    Orth VH, Rehm M, Thiel M et al (1998) First clinical implications of perioperative red cell volume measurement with a nonradioactive marker (sodium fluorescein). Anesth Analg 87:1234–1238PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag Berlin 2017

Authors and Affiliations

  • M. Rehm
    • 1
  • N. Hulde
    • 1
  • T. Kammerer
    • 1
  • A. S. Meidert
    • 1
  • K. Hofmann-Kiefer
    • 1
  1. 1.Klinik für AnaesthesiologieKlinikum der Universität MünchenMünchenDeutschland

Personalised recommendations