Skip to main content
Log in

Hypoxämie nach Allgemeinanästhesie

Hypoxemia after general anesthesia

  • Originalien
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Studien aus den Zeiten der klinischen Einführung der Pulsoxymetrie zeigten, dass nach Allgemeinanästhesien ein großer Anteil der Patienten auf dem Weg vom OP in den Aufwachraum (AWR) unter Atmung von Raumluft hypoxämisch [pulsoxymetrisch gemessene Sauerstoffsättigung (SpO2) < 90%] war und dass das Erkennen der Hypoxämie anhand von klinischen Kriterien sehr unzuverlässig ist. Unklarheit besteht darüber, ob die Inzidenz von Hypoxämien trotz modernerer Anästhesieverfahren immer noch so hoch ist, ob sich die Unzuverlässigkeit der Detektion von Hypoxämien nach klinischen Kriterien bestätigt und was die Risikofaktoren für Hypoxämien nach Allgemeinanästhesie sind.

Methoden

Bei 970 in Allgemeinanästhesie operierten Patienten wurde nach dem Transport vom OP in den AWR unter Atmung von Raumluft die SpO2 gemessen, nachdem der betreuende Anästhesist eine Schätzung der SpO2 vorgenommen hatte. Zusammenhänge zwischen biometrischen, operativen und anästhesiologischen Variablen einerseits sowie Hypoxämie andererseits wurden multivariat untersucht.

Ergebnisse

Es hatten 17% der 959 ausgewerteten Patienten eine SpO2 < 90%; hierbei wiesen 6,6% der Patienten eine SpO2 < 85% auf. Die Hypoxämie wurde in 82% der Fälle nicht erkannt. Unabhängige Einflussfaktoren auf eine Hypoxämie waren: Ausgangssättigung, Body-Mass-Index, Alter, körperlicher Status gemäß Klassifikation der American Society of Anesthesiologists, Differenz zwischen maximalem und minimalem Beatmungsdruck, Beatmungsmodus, Wahl des Opioids, des Relaxans und Verwendung von Lachgas.

Schlussfolgerung

Durch die Wahl von Anästhetika können Hypoxämien und Sättigungsabfälle günstig beeinflusst werden, ohne dass dadurch diese Problematik vollständig gelöst werden kann, weil die stärksten Risikofaktoren patientenassoziiert sind. Da bislang selbst bei Kenntnis von Risikofaktoren nicht vorherzusagen ist, wer nach Allgemeinanästhesie eine SpO2 < 90% haben wird und überdies die Abschätzung der SpO2 anhand klinischer Kriterien höchst unzuverlässig ist, erscheint der Transport von spontan-atmenden Patienten nach Narkose ohne Überwachung der SpO2 bzw. ohne O2-Gabe überdenkenswert.

Abstract

Background

Studies conducted shortly after the implementation of pulse oximetry (PO) into clinical practice 20–25 years ago revealed that many patients breathing room air during transfer from the operating room (OR) to the post-anesthesia care unit (PACU) directly after general anesthesia (GA) had a peripheral oxygen saturation (SpO2) below 90%. Moreover, it was shown that the detection of hypoxemia by clinical criteria is extremely unreliable. Meanwhile, the use of PO has become part of the obligatory standard monitoring during GA in Germany and many other countries. Likewise, the use of PO is standard care in the PACU although there are no official recommendations. However, for the time period in between, i.e. immediately after GA during transportation of patients from the OR to the PACU, monitoring of the SpO2 in patients breathing room air is neither obligatory in Germany nor are there any official recommendations or guidelines in this respect. Given the introduction of shorter acting anesthetic agents within the last 25 years, the main goal of this study was to explore whether the incidence of hypoxemia in the immediate period after GA is still so high. Additional aims of this study were to examine whether the detection of hypoxemia based on clinical criteria can be confirmed to be very unreliable, what the risk factors for hypoxemia following GA are and how common it is in Germany to transport patients from the OR to the PACU without PO and supplemental oxygen.

Methods

In a prospective observational study 970 patients who underwent a broad spectrum of elective surgery under GA in a university hospital setting were included. The SpO2 was measured at the end of the transfer from the OR to the PACU immediately after the anesthetist who had taken care of the patient during the operation had estimated the SpO2. The association between biometric, surgical and anesthesiological variables on the one hand and hypoxemia as well as a decrease of SpO2 on the other hand were studied using multivariate methods. Finally, a survey including all university hospitals was carried out to find out about the use of PO and oxygen during patient transfer from the OR to the PACU.

Results

Of the 959 patients who were eligible for analysis 17% had a SpO2 < 90% and 6.6% a SpO2 < 85%. Hypoxemia was not recognized in 82% of the patients in whom an assessment based on clinical grounds was carried out. Variables with an independent influence on hypoxemia and decrease of SpO2 were as follows: saturation before induction of GA, body mass index, age, American Society of Anesthesiologists (ASA) physical status, difference between maximum and minimum inspiratory pressure, mode of ventilation, the choice of opioid and muscle relaxant as well as the use of nitrous oxide. Patient-dependent risk factors had the strongest impact on hypoxemia. In about 80% of the university hospitals neither PO nor supplemental oxygen is used during transportation of the patient from the OR to the PACU.

Conclusions

The use of opioids and relaxants with short duration of action may have favorable effects on preventing hypoxemia and decreases of SpO2. These measures will, however, not be sufficient to solve this problem because the highest risk factors for hypoxemia are patient-related. Despite knowing risk factors for oxygen desaturation, it is currently not possible to reliably predict which patients will become hypoxemic or have a decrease of SpO2. Therefore, transportation of patients breathing room air from the OR to the PACU directly after GA without use of PO or supplemental oxygen seems to be questionable in terms of patient safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Ali J, Weisel RD, Layug AB et al (1974) Consequences of postoperative alterations in respiratory mechanics. Am J Surg 128:376–382

    Article  PubMed  CAS  Google Scholar 

  2. Bendixen HH, Hedley-Whyte J, Laver MB (1963) Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation. A concept of atelectasis. N Engl J Med 269:991–996

    Article  PubMed  CAS  Google Scholar 

  3. Berg H, Roed J, Viby-Mogensen J et al (1997) Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand 41:1095–1103

    Article  PubMed  CAS  Google Scholar 

  4. Bissinger U, Schimek F, Lenz G (2000) Postoperative residual paralysis and respiratory status: a comparative study of pancuronium and vecuronium. Physiol Res 49:455–462

    PubMed  CAS  Google Scholar 

  5. Bruns J, Turner E, Kettler D (1992) Die Häufigkeit von Hypoxie in der unmittelbaren postoperativen phase. Anaesthesist 41:313–315

    PubMed  CAS  Google Scholar 

  6. Canet J, Ricos M, Vidal F (1989) Early postoperative arterial oxygen desaturation. Determining factors and response to oxygen therapy. Anesth Analg 69:207–212

    Article  PubMed  CAS  Google Scholar 

  7. Dahan A, Elsen MJ van den, Berkenbosch A et al (1994) Effects of subanesthetic halothane on the ventilatory responses to hypercapnia and acute hypoxia in healthy volunteers. Anesthesiology 80:727–738

    Article  PubMed  CAS  Google Scholar 

  8. Daley MD, Norman PH, Colmenares ME, Sandler AN (1991) Hypoxaemia in adults in the post-anaesthesia care unit. Can J Anaesth 38:740–746

    Article  PubMed  CAS  Google Scholar 

  9. Debaene B, Plaud B, Dilly MP, Donati F (2003) Residual paralysis in the PACU after a single intubating dose of nondepolarizing muscle relaxant with an intermediate duration of action. Anesthesiology 98:1042–1048

    Article  PubMed  CAS  Google Scholar 

  10. Eikermann M, Groeben H, Husing J, Peters J (2003) Accelerometry of adductor pollicis muscle predicts recovery of respiratory function from neuromuscular blockade. Anesthesiology 98:1333–1337

    Article  PubMed  Google Scholar 

  11. Eikermann M, Vogt FM, Herbstreit F et al (2007) The predisposition to inspiratory upper airway collapse during partial neuromuscular blockade. Am J Respir Crit Care Med 175:9–15

    Article  PubMed  Google Scholar 

  12. Eriksson LI (1996) Reduced hypoxic chemosensitivity in partially paralysed man. A new property of muscle relaxants? Acta Anaesthesiol Scand 40:520–523

    Article  PubMed  CAS  Google Scholar 

  13. Eriksson LI, Lennmarken C, Wyon N, Johnson A (1992) Attenuated ventilatory response to hypoxaemia at vecuronium-induced partial neuromuscular block. Acta Anaesthesiol Scand 36:710–715

    Article  PubMed  CAS  Google Scholar 

  14. Eriksson LI, Sato M, Severinghaus JW (1993) Effect of a vecuronium-induced partial neuromuscular block on hypoxic ventilatory response. Anesthesiology 78:693–699

    Article  PubMed  CAS  Google Scholar 

  15. Eriksson LI, Sundman E, Olsson R et al (1997) Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology 87:1035–1043

    Article  PubMed  CAS  Google Scholar 

  16. Franck M, Radtke FM, Baumeyer A et al (2010) Behandlungsrichtlinien für „postoperative nausea and vomiting“ – Wie gut gelingt der Wissenstransfer hin zu einer besseren klinischen Versorgung. Anaesthesist 59:524–528

    Article  PubMed  CAS  Google Scholar 

  17. Freye E, Levy JV (2004) Use of opioids in the elderly – pharmacokinetic and pharmacodynamic considerations. Anasthesiol Intensivmed Notfallmed Schmerzther 39:527–537

    Article  PubMed  CAS  Google Scholar 

  18. Gottschalk A, Van Aken H, Zenz M, Standl T (2011) Is anesthesia dangerous? Dtsch Arztebl Int 108:469–474

    PubMed  Google Scholar 

  19. Gunnarsson L, Tokics L, Gustavsson H, Hedenstierna G (1991) Influence of age on atelectasis formation and gas exchange impairment during general anaesthesia. Br J Anaesth 66:423–432

    Article  PubMed  CAS  Google Scholar 

  20. Hedenstierna G, Edmark L (2010) Mechanisms of atelectasis in the perioperative period. Best Pract Res Clin Anaesthesiol 24:157–169

    Article  PubMed  Google Scholar 

  21. Hewlett AM, Branthwaite MA (1975) Postoperative pulmonary function. Br J Anaesth 47:102–107

    Article  PubMed  CAS  Google Scholar 

  22. Hudes ET, Marans HJ, Hirano GM et al (1989) Recovery room oxygenation: a comparison of nasal catheters and 40 per cent oxygen masks. Can J Anaesth 36:20–24

    Article  PubMed  CAS  Google Scholar 

  23. Knill RL, Kieraszewicz HT, Dodgson BG, Clement JL (1983) Chemical regulation of ventilation during isoflurane sedation and anaesthesia in humans. Can Anaesth Soc J 30:607–614

    Article  PubMed  CAS  Google Scholar 

  24. Knill RL, Manninen PH, Clement JL (1979) Ventilation and chemoreflexes during enflurane sedation and anaesthesia in man. Can Anaesth Soc J 26:353–360

    Article  PubMed  CAS  Google Scholar 

  25. Kooij FO, Klok T, Hollmann MW, Kal JE (2008) Decision support increases guideline adherence for prescribing postoperative nausea and vomiting prophylaxis. Anesth Analg 106:893–898

    Article  PubMed  Google Scholar 

  26. Kraus L, Pabst A, Piontek D, Müller S (2010) Trends des Substanzkonsums und substanzbezogener Störungen. Ergebnisse des epidemiologischen Suchtsurveys 1995–2009. Sucht 56:337–347

    Google Scholar 

  27. Loick HM, Goenner-Radig C, Prien T (1991) Pulsoximetrische Überwachung des postnarkotischen Transportes in der Opthalmochirurgie: Hypoxiegefährdung trotz Präoxigenierung. Anasthesiol Intensivmed Notfallmed Schmerzther 26:48–50

    Article  PubMed  CAS  Google Scholar 

  28. Mathes DD, Conaway MR, Ross WT (2001) Ambulatory surgery: room air versus nasal cannula oxygen during transport after general anesthesia. Anesth Analg 93:917–921

    Article  PubMed  CAS  Google Scholar 

  29. Meiklejohn BH, Smith G, Elling AE, Hindocha N (1987) Arterial oxygen desaturation during postoperative transportation: the influence of operation site. Anaesthesia 42:1313–1315

    Article  PubMed  CAS  Google Scholar 

  30. Moller JT, Johannessen NW, Berg H et al (1991) Hypoxaemia during anaesthesia – an observer study. Br J Anaesth 66:437–444

    Article  PubMed  CAS  Google Scholar 

  31. Moller JT, Johannessen NW, Espersen K et al (1993) Randomized evaluation of pulse oximetry in 20,802 patients: II. Perioperative events and postoperative complications. Anesthesiology 78:445–453

    Article  PubMed  CAS  Google Scholar 

  32. Moller JT, Wittrup M, Johansen SH (1990) Hypoxemia in the postanesthesia care unit: an observer study. Anesthesiology 73:890–895

    Article  PubMed  CAS  Google Scholar 

  33. Murphy GS, Brull SJ (2010) Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg 111:120–128

    Article  PubMed  Google Scholar 

  34. Murphy GS, Szokol JW, Franklin M et al (2004) Postanesthesia care unit recovery times and neuromuscular blocking drugs: a prospective study of orthopedic surgical patients randomized to receive pancuronium or rocuronium. Anesth Analg 98:193–200

    Article  PubMed  CAS  Google Scholar 

  35. Murphy GS, Szokol JW, Marymont JH et al (2008) Intraoperative acceleromyographic monitoring reduces the risk of residual neuromuscular blockade and adverse respiratory events in the postanesthesia care unit. Anesthesiology 109:389–398

    Article  PubMed  Google Scholar 

  36. Pedersen T, Dyrlund Pedersen B, Moller AM (2003) Pulse oximetry for perioperative monitoring. Cochrane Database Syst Rev 3:CD002013

    PubMed  Google Scholar 

  37. Pedersen T, Moller AM, Hovhannisyan K (2009) Pulse oximetry for perioperative monitoring. Cochrane Database Syst Rev 4:CD002013

    PubMed  Google Scholar 

  38. Pedersen T, Moller AM, Pedersen BD (2003) Pulse oximetry for perioperative monitoring: systematic review of randomized, controlled trials. Anesth Analg 96:426–431

    PubMed  Google Scholar 

  39. Richtlinie der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin: Ausstattung des anästhesiologischen Arbeitsplatzes (1995) Anaesth Intensivmed 36:250–254

  40. Rowbotham DJ, Birks RJ, Barham CJ et al (2002) Immediate postanaesthetic recovery. Recommendations of the association of anaesthetists of Great Britain and Ireland:Chapter 4:S 6. AAGBI, London

  41. Sarton E, Romberg R, Nieuwenhuijs D et al (2002) Einfluss von Anästhetika auf die Atemkontrolle. Anaesthesist 51:285–291

    Article  PubMed  CAS  Google Scholar 

  42. Scuderi PE, Mims GR 3rd, Weeks DB et al (1996) Oxygen administration during transport and recovery after outpatient surgery does not prevent episodic arterial desaturation. J Clin Anesth 8:294–300

    Article  PubMed  CAS  Google Scholar 

  43. Smith DC, Crul JF (1988) Early postoperative hypoxia during transport. Br J Anaesth 61:625–627

    Article  PubMed  CAS  Google Scholar 

  44. Statistisches Bundesamt Deutschland gemäß Pressemitteilung 194 vom 02.06.2010: http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/DE/Presse/pm/2010/06/PD10_194_239,templateId ( renderPrint.psml)

  45. Strandberg A, Tokics L, Brismar B et al (1986) Atelectasis during anaesthesia and in the postoperative period. Acta Anaesthesiol Scand 30:154–158

    Article  PubMed  CAS  Google Scholar 

  46. Sundman E, Witt H, Olsson R et al (2000) The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans: pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology 92:977–984

    Article  PubMed  CAS  Google Scholar 

  47. Sykes MK, Young WE, Robinson BE (1965) Oxygenation during anaesthesia with controlled ventilation. Br J Anaesth 37:314–325

    PubMed  CAS  Google Scholar 

  48. Tinker JH, Dull DL, Caplan RA et al (1989) Role of monitoring devices in prevention of anesthetic mishaps: a closed claims analysis. Anesthesiology 71:541–546

    Article  PubMed  CAS  Google Scholar 

  49. Tokics L, Hedenstierna G, Strandberg A et al (1987) Lung collapse and gas exchange during general anesthesia: effects of spontaneous breathing, muscle paralysis, and positive end-expiratory pressure. Anesthesiology 66:157–167

    Article  PubMed  CAS  Google Scholar 

  50. Tyler IL, Tantisira B, Winter PM, Motoyama EK (1985) Continuous monitoring of arterial oxygen saturation with pulse oximetry during transfer to the recovery room. Anesth Analg 64:1108–1112

    Article  PubMed  CAS  Google Scholar 

  51. Uakritdathikarn T, Chongsuvivatwong V, Geater AF et al (2008) Perioperative desaturation and risk factors in general anesthesia. J Med Assoc Thai 91:1020–1029

    PubMed  Google Scholar 

  52. Elsen M van den, Dahan A, DeGoede J et al (1995) Influences of subanesthetic isoflurane on ventilatory control in humans. Anesthesiology 83:478–490

    Article  PubMed  Google Scholar 

  53. Xue FS, Li BW, Zhang GS et al (1999) The influence of surgical sites on early postoperative hypoxemia in adults undergoing elective surgery. Anesth Analg 88:213–219

    PubMed  CAS  Google Scholar 

Download references

Danksagung

Die Autoren danken den Kollegen der universitären Anästhesiekliniken, die bei der Durchführung der Umfrage durch das Ausfüllen der Fragebogen Unterstützung geleistet haben. Dank geht ferner an Herrn Prof. K. Klotz, Herrn Prof. F. Wappler und Herrn PD Dr. J. Schumacher für die fruchtbare Diskussion im Rahmen der Manuskripterstellung. Abschließend danken wir den Mitarbeitern der eigenen Klinik, die die Autoren während der Datenerhebung unterstützt haben.

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Aust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aust, H., Eberhart, L., Kranke, P. et al. Hypoxämie nach Allgemeinanästhesie. Anaesthesist 61, 299–309 (2012). https://doi.org/10.1007/s00101-012-2000-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-012-2000-x

Schlüsselwörter

Keywords

Navigation