Skip to main content
Log in

ProSeal®-Kehlkopfmaske in normalgewichtigen und adipösen Patienten

Oxygenierung unter druckkontrollierter Beatmung mit verschiedenen endexspiratorischen Drücken

ProSeal™laryngeal mask in normal weight and obese patients

Oxygenation under pressure-controlled ventilation and different end-expiratory pressures

  • Originalien
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Larynxmaske LMA-ProSeal® (PLMA) gewährleistet einen effektiveren Atemwegsverschluss als die LMA-Classic® (CLMA). Der Einsatz eines positiven endexspiratorischen Drucks („positive end-expiratory pressure“, PEEP) im Rahmen einer druckkontrollierten Beatmung („pressure controlled ventilation“, PCV) bei Verwendung der PLMA könnte einen Einfluss auf die Oxygenierung erwachsener Patienten haben.

Material und Methoden

Es wurden 148 Patienten (mittleres Alter 44 Jahre, „range“ 18–65 Jahre; mittleres Körpergewicht: 86 kg, Range 49–120 kg) in 2 Kollektiven rekrutiert. Gruppe N (Normalpopulation): Body-Mass-Index (BMI) <30 kg/m2 und Gruppe A (Adipositas): BMI ≥30 und <36 kg/m2. Das Anästhesieverfahren wurde mit Propofol, Fentanyl und Remifentanil ohne Muskelrelaxanzien durchgeführt. Die PCV erfolgte randomisiert mit einem PEEP von 0 cm H2O, 5 cm H2O oder 8 cm H2O. Eine Blutgasanalyse wurde 50 min nach Narkoseinduktion bei einer inspiratorischen Sauerstofffraktion (FIO2)=0,3 durchgeführt. Im ersten Teil wurde der arterielle Sauerstoffpartialdruck (paO2) unter 0 cm H2O mit 5 cm H2O, im zweiten Teil unter 5 cm H2O mit 8 cm H2O verglichen.

Ergebnisse

In Gruppe N fanden sich weder im ersten Teil (139±28 vs. 141±28 mmHg; p=0,88) noch im zweiten Teil (127±24 mmHg vs. 134±26 mmHg; p=0,35) signifikante Unterschiede im paO2. In Gruppe A zeigte sich im ersten Teil (75±12 vs. 94±18 mmHg; p=0,02), nicht aber im zweiten Teil (92±21 vs. 103±18 mmHg; p=0,04) ein signifikanter Unterschied im paO2.

Schlussfolgerung

Die Anwendung eines PEEP im Rahmen einer PCV resultiert beim Einsatz der PLMA bei adipösen Patienten mit einem BMI ≥30 und <36 kg/m2, nicht aber bei normalgewichtigen Patienten in einer verbesserten Oxygenierung.

Abstract

Background

Most of the data on combining pressure-controlled ventilation (PCV) with positive end-expiratory pressure (PEEP) come from studies with an endotracheal tube (ETT) whereas data on utilization of PEEP with a laryngeal mask airway (LMA) are limited. The LMA-ProSeal® (PLMA) forms a more effective seal of the airway than the LMA-Classic™ (CLMA). The application of PEEP when PCV is used with the PLMA could have an impact on oxygenation in adult patients.

Methods

For this study 148 patients with an mean age of 44 years (range18–65 years) and mean weight of 86 kg (range 49–120 kg) were recruited in 2 groups: group N (Normal): body-mass index (BMI) <30 kg/m2 and group O (Obesity) BMI ≥30 and <36 kg/m2. Cardiovascular and pulmonary disease and a history of smoking were exclusion criteria in addition to the usual LMA contraindications. The bispectral index-guided (BIS) anesthesia technique was used with propofol, fentanyl, and remifentanil without muscle relaxants. Measurement of PLMA seal pressure served as recruitment maneuver and PCV was randomly combined with 0 cmH2O, 5 cmH2O or 8 cmH2O PEEP. An arterial blood gas sample was taken 50 min after induction of anesthesia under an inspiratory oxygen fraction (FIO2) of 0.3. In the first part partial oxygen pressure (paO2) under 0 cmH2O was compared with paO2 under 5 cmH2O and in the second part paO2 under 5 cmH2O was compared with paO2 under 8 cmH2O. A significant difference was set as p<0.025.

Results

The PLMA could be placed after 3 attempts in 147 patients. The mean seal pressure was in the range of 24–30 cm H2O. Application of randomized PEEP was possible in all patients and ventilation was comparable between corresponding groups. In group N no differences were found in part 1 (139±28 vs. 141±28 mmHg, p=0.88) or part 2 (127±24 vs. 134±26 mmHg, p=0.35). In group O there was a significant difference in paO2 in part 1 (75±12 vs. 94±18 mmHg, p=0.02) but not in part 2 (92±21 vs. 103±18 mmHg, p=0.04).

Conclusions

The application of PEEP when PCV is used with the PLMA results in improved oxygenation in obese patients with a BMI ≥30 and <36 kg/m2 but not in normal weight patients. Alveolar recruitment produced by seal pressure measurements below 30 cm H2O was sufficient to produce a clinically significant improvement in oxygenation in most obese patients and there was a significant improvement of oxygenation with PEEP=5 cmH2O. Both findings are in contrast to findings of studies using an ETT which suggests that higher pressures (40 cmH2O) are needed for recruitment of collapsed alveoli and higher PEEP (10 cmH2O) is needed to produce a clinically significant improvement in oxygenation in obese patients. The results of this study support data showing that the consequences of bronchopulmonary airway reactions known to occur with an ETT are less pronounced or absent when an LMA is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Berry A, Brimacombe J, Keller C, Verghese C (1999) Pulmonary airway resistance with the ETT versus laryngeal mask airway in paralysed anesthetized adult patients. Anesthesiology 90:295–397

    Google Scholar 

  2. Brimacombe J, Berry A (1993) A proposed fiber-optic scoring system to standardize the assessment of the laryngeal mask airway position. Anesth Analg 76:457

    PubMed  CAS  Google Scholar 

  3. Brismar B, Hedenstierna G, Lundquist H et al (1985) Pulmonary densities during anesthesia with muscular relaxation: a proposal of atelectasis. Anesthesiology 62:422–428

    Article  PubMed  CAS  Google Scholar 

  4. Coussa M, Proietti S, Schnyder P et al (2004) Prevention of atelectasis formation during the induction of general anesthesia in morbidly obese patients. Anesth Analg 98:1491–1495

    Article  PubMed  Google Scholar 

  5. Eichenberger A, Proietti S, Wicky S et al (2002) Morbid obesity and postoperative pulmonary atelectasis: an underestimated problem. Anesth Analg 95:1788–1792

    Article  PubMed  Google Scholar 

  6. Gander S, Frascarolo P, Suter M et al (2005) Positive end-expiratory pressure during the induction of general anesthesia increases duration of nonhypoxic apnoea in morbidly obese patients. Anesth Analg 100:580–584

    Article  PubMed  Google Scholar 

  7. Goldmann K, Hechtfischer C, Malik A et al (2008) Prospective study of ProSeal™ laryngeal mask airway use in 2114 patients. Anesth Analg 107:1856–1861

    Article  PubMed  Google Scholar 

  8. Goldmann K, Malik A, Hechtfischer C (2011) Prospektive Anwendungsbeobachtung des klinischen Einsatzes der ProSeal® Kehlkopfmaske bei 512 Säuglingen, Kindern und Jugendlichen im Routinebetrieb eines Universitätsklinikums. Anaesthesist 60, doi 10.1007/s00101-011-1875-2

  9. Goldmann K, Roettger C, Wulf H (2005) Use of the ProSeal™ laryngeal mask airway for pressure-controlled ventilation with and without positive end-expiratory pressure in paediatric patients: a randomized, controlled trial. Br J Anaesth 95:831–834

    Article  PubMed  CAS  Google Scholar 

  10. Gunnarsson L, Tokics L, Gustavson H, Hedenstierna G (1991) Influence of age on atelectasis formation and gas exchange impairment during general anaesthesia. Br J Anaesth 66:423–432

    Article  PubMed  CAS  Google Scholar 

  11. Hedenstierna G, Rothen HU (2000) Atelectasis formation during anesthesia: causes and measures to prevent it. J Clin Monit Comput 16:329–335

    Article  PubMed  CAS  Google Scholar 

  12. Hedenstierna G (2002) Airway closure and atelectasis and gas exchange during anesthesia. Minerva Anestesiol 68:332–336

    PubMed  CAS  Google Scholar 

  13. Hedenstierna G (2003) Alveolar collapse and closure of airways: regular effects of anaesthesia. Clin Physiol Funct Imaging 23:123–129

    Article  PubMed  Google Scholar 

  14. Hewlett AM, Hulands GH, Nunn JF, Milledge JS (1974) Functional residual capacity during anesthesia III: artificial ventilation. Br J Anaesth 46:495–503

    Article  PubMed  CAS  Google Scholar 

  15. Keller C, Brimacombe J (2001) Spontanatmung versus kontrollierte Beatmung mit der Laryxmaske. Eine Übersicht. Anaesthesist 50:187–191

    Article  PubMed  CAS  Google Scholar 

  16. Keller C, Brimacombe J, Keller K, Morris R (1999) Comparison of four methods for assessing airway sealing pressure with the laryngeal mask airway in adult patients. Br J Anaesth 82:286–287

    Article  PubMed  CAS  Google Scholar 

  17. Kim ES, Bishop M (1999) Endotracheal intubation, but not laryngeal mask airway insertion, produces reversible bronchoconstriction. Anesthesiology 90:391–394

    Article  PubMed  CAS  Google Scholar 

  18. Lindberg P, Gunnarsson L, Tokics L et al (1992) Atelectasis, gas exchange and lung function in the postoperative period. Acta Anaesthesiol Scand 36:546–553

    Article  PubMed  CAS  Google Scholar 

  19. LMA-ProSeal™ Anleitungshandbuch (2001) The Laryngeal Mask Company Limited Nicosia, Zypern

  20. Moller JT, Johannessen NW, Berg H et al (1991) Hypoxaemia during anaesthesia – an observer study. Br J Anaesth 66:437–444

    Article  PubMed  CAS  Google Scholar 

  21. Reber A, Engberg G, Sporre B et al (1996) Volumetric analysis of alterations in the lungs during general anaesthesia. Br J Anaesth 76:760–766

    PubMed  CAS  Google Scholar 

  22. Renner M, Hohlrieder M, Wölk T et al (2004) Administration of 100% oxygen before removal of the laryngeal mask airway does not affect postanesthetic arterial partial pressure of oxygen. Anesth Analg 98:257–259

    Article  PubMed  Google Scholar 

  23. Rothen HU, Sporre B, Engberg G et al (1993) Re-expansion of atelectasis during general anaesthesia: a computed tomography study. Br J Anaesth 71:788–795

    Article  PubMed  CAS  Google Scholar 

  24. Strandberg Ǻ, Tokics L, Lundquist H, Hedenstierna G (1987) Constitutional factors promoting development of atelectasis during anesthesia. Acta Anaesthesiol Scand 31:21–24

    Article  PubMed  CAS  Google Scholar 

  25. Thews K (1986) Lungenatmung. In: Schmidt T (Hrsg) Physiologie des Menschen, 23. Aufl. Springer, Berlin Heidelberg New York, S 574–610

  26. Tusman G, Böhm SH, Vazquez de Anda GF et al (1999) Alveolar recruitment strategies improves arterial oxygenation during general anaesthesia. Br J Anaesth 82:8–13

    PubMed  CAS  Google Scholar 

  27. Zoremba M, Aust H, Eberhart L et al (2009) Comparison between intubation and the laryngeal mask airway in moderately obese adults. Acta Anaesthesiol Scand 53:436–442

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Goldmann DEAA, HCM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldmann, K., Gerlach, M. & Bornträger, C. ProSeal®-Kehlkopfmaske in normalgewichtigen und adipösen Patienten. Anaesthesist 60, 908–915 (2011). https://doi.org/10.1007/s00101-011-1926-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-011-1926-8

Schlüsselwörter

Keywords

Navigation