Skip to main content
Log in

Protektive Beatmungstherapie

Auch für den OP relevant?

Protective ventilation therapy

Also relevant for the operating room?

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die mechanische Beatmung ist eine etablierte Methode in der Behandlung der respiratorischen Insuffizienz und ermöglicht die Sicherstellung der Ventilation und Oxygenierung während einer Allgemeinanästhesie. Allgemeinanästhesie und mechanische Beatmung führen zu relevanten Veränderungen der Ventilation, der pulmonalen Perfusion und des Gasaustausches. Verfahrensbedingt sind mit der mechanischen Beatmung Risiken verbunden. Ein Risiko in der Behandlung von Patienten stellt der beatmungsassoziierte Lungenschaden dar. Bei Patienten mit akutem Lungenversagen konnten durch die Anwendung einer lungenprotektiven Beatmungsstrategie (Tidalvolumenreduktion und Limitierung des Beatmungsplateaudrucks) die Aktivität von Inflammationsmediatoren, die Beatmungsdauer und der Endpunkt Mortalität positiv beeinflusst werden. Es existieren experimentelle Hinweise, dass die mechanische Beatmung von gesunden Lungen gleichfalls Lungenschäden induziert; die klinische Relevanz dieser experimentellen Ergebnisse ist derzeit unklar. Klinische Studien, die eine konventionelle Beatmung mit einer protektiven Beatmung während Allgemeinanästhesie auf den Endpunkt pulmonale Inflammation verglichen haben, erbrachten inkonsistente Ergebnisse. Es existieren keine klinischen Daten, die zeigen, dass die Translation des protektiven Beatmungskonzepts von Patienten mit akutem Lungenversagen auf die Beatmung lungengesunder Patienten zu einem Vorteil hinsichtlich der Morbidität und Mortalität führt. Die Frage nach der optimalen protektiven mechanischen Beatmung bei lungengesunden Patienten bleibt damit unbeantwortet.

Abstract

General anesthesia and mechanical ventilation affect gas exchange, ventilation and pulmonary perfusion and there is an increasing body of evidence that mechanical ventilation itself promotes lung injury. Lung protective mechanical ventilation in patients suffering from acute lung injury or acute respiratory distress syndrome by means of reduced tidal volumes and limited plateau pressures has been shown to result in reduction of systemic inflammatory mediators, increased ventilator-free days and reduction in mortality. Experimental studies suggest that mechanical ventilation of uninjured lungs may also induce lung damage; however, the clinical relevance remains unknown. Human prospective studies comparing mechanical ventilation strategies during general anesthesia have shown inconsistent results with respect to inflammatory mediators. There is a lack of clinical evidence that lung protective ventilation strategies as used in patients with lung injury may improve clinical outcome of patients with uninjured lungs. The question of which ventilatory strategy will best protect normal human lungs remains unanswered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Milic-Emili J, Torchio R, D’Angelo E (2007) Closing volume: a reappraisal. Eur J Appl Physiol 99:567–583

    Article  PubMed  Google Scholar 

  2. Gunnarsson L, Tokics L, Gustavsson H et al (1991) Influence of age on atelectasis formation and gas exchange impairment during general anaesthesia. Br J Anaesth 66:423–432

    Article  CAS  PubMed  Google Scholar 

  3. Magnusson L, Spahn DR (2003) New concepts of atelectasis during general anaesthesia. Br J Anaesth 91:61–72

    Article  CAS  PubMed  Google Scholar 

  4. Oyarzun MJ, Iturriaga R, Donso P et al (1991) Factors affecting distribution of alveolar surfactant during resting ventilation. Am J Physiol 261:L210–L217

    CAS  PubMed  Google Scholar 

  5. Rehder K, SesslerAD, Rodarte JR (1977) Regional intrapulmonary gas distribution in awake and anesthetized-paralyzed man. J Appl Physiol 42:391–402

    CAS  PubMed  Google Scholar 

  6. Rothen HU, Sporre B, Engberg G et al (1988) Airway closure, atelectasis and gas exchange during general anaesthesia. Br J Anaesth 81:681–686

    Google Scholar 

  7. Brismar B, Hedenstierna G, Lundquist H et al (1985) Pulmonary densities during anesthesia with muscular relaxation: a proposal of atelectasis. Anesthesiology 62:422–428

    Article  CAS  PubMed  Google Scholar 

  8. Lindberg P, Gunnarsson L, Tokics L et al (1992) Atelectasis and lung function in the postoperative period. Acta Anaesthesiol Scand 36:546–553

    Article  CAS  PubMed  Google Scholar 

  9. Pelosi P, Croci M, Ravagnan I et al (1998) The effects of body mass on lung volumes, respiratory mechanics and gas exchange during general anesthesia. Anesth Analg 87:654–660

    Article  CAS  PubMed  Google Scholar 

  10. Gunnarsson L, Tokics L, Lundquist H et al (1991) Chronic obstructive pulmonary disease and anaesthesia: formation of atelectasis and gas exchange impairment. Eur Respir J 4:1106–1116

    CAS  PubMed  Google Scholar 

  11. Gattinoni L, Chiumello D, Carlesso E, Valenza F (2004) Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care 8:350–355

    Article  PubMed  Google Scholar 

  12. Pinsky MR (2002) Recent advances in the clinical application of heart-lung interactions. Curr Opin Crit Care 8:26–31

    Article  PubMed  Google Scholar 

  13. Del Sorboa L, Slutsky AS (2010) Ventilatory support for acute respiratory failure: new and ongoing pathophysiological, diagnostic and therapeutic developments. Curr Opin Crit Care 16:1–7

    Article  Google Scholar 

  14. Tremblay L, Slutsky A (2006) Ventilator induced lung injury: from bench to bedside. Intensive Care Med 32:24–33

    Article  PubMed  Google Scholar 

  15. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116:9S–15S

    Article  CAS  PubMed  Google Scholar 

  16. Pinhu L, Whithead T, Evans T et al (2003) Ventilator-associated lung injury. Lancet 361:332–340

    Article  PubMed  Google Scholar 

  17. Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880–884

    CAS  PubMed  Google Scholar 

  18. Chu EK, Whitehead T, Slutsky AS (2004) Effects of cyclic opening and closing at low- and high-volume ventilation on bronchoalveolar lavage cytokines. Crit Care Med 32:168–174

    Article  CAS  PubMed  Google Scholar 

  19. Villar J, Herrera-Abreu MT, Valladares F et al (2009) Experimental ventilator-induced lung injury: exacerbation by positive end-expiratory pressure. Anesthesiology 110:1341–1347

    Article  PubMed  Google Scholar 

  20. D’Angelo E, Pecchiari M, Saetta M et al (2004) Dependence of lung injury on inflation rate during low-volume ventilation in normal open-chest rabbits. J Appl Physiol 97:260–268

    Article  Google Scholar 

  21. D’Angelo E, Pecchiari M, Baraggia P et al (2002) Low-volume ventilation causes peripheral airway injury and increased airway resistance in normal rabbits. J Appl Physiol 92:949–956

    Google Scholar 

  22. Farias LL, Faffe DS, Xisto DG et al (2005) Positive end-expiratory pressure prevents lung mechanical stress caused by recruitment/derecruitment. J Appl Physiol 98:53–61

    Article  PubMed  Google Scholar 

  23. David M, Karmrodt J, Bletz C et al (2005) Analysis of atelectasis, ventilated and hyperinflated lung during mechanical ventilation by dynamic CT. Chest 128:3757–3770

    Article  PubMed  Google Scholar 

  24. Taskar V, John J, Evander E et al (1995) Healthy lungs tolerate repetitive collapse and reopening during short periods of mechanical ventilation. Acta Anaesthesiol Scand 39:370–376

    Article  CAS  PubMed  Google Scholar 

  25. D’Angelo E, Koutsoukou A, Della Valle P et al (2008) Cytokine release, small airway injury and parenchymal damage during mechanical ventilation in normal open-chest rats. J Appl Physiol 104:41–49

    Article  Google Scholar 

  26. Hong CM, Xu DZ, Lu Q et al (2010) Low tidal volume and high positive end-expiratory pressure mechanical ventilation results in increased inflammation and ventilator-associated lung injury in normal lungs. Anesth Analg, doi: 10.1213/ANE.0b013e3181cfc416

  27. Sackner MA, Hirsch JA, Epstein S, Rywlin AM (1976) Effect of oxygen in graded concentrations upon tracheal mucus velocity. A study in anesthestized dogs. Chest 69:164–167

    Article  CAS  PubMed  Google Scholar 

  28. Sinclair SE, Altemeier WA, Matute-Bello G, Chi EY (2004) Augmented lung injury due to interaction between hyperoxia and mechanical ventilation. Crit Care Med 32:2496–2501

    Article  PubMed  Google Scholar 

  29. Wilson MR, Goddard ME, O’Dea KP et al (2007) Differential roles of p55 and p75 tumor necrosis factor receptors on stretch-induced pulmonary edema in mice. Am J Physiol Lung Cell Mol Physiol 293:L60–L68

    Article  CAS  PubMed  Google Scholar 

  30. Ogawa EN, Ishizaka A, Tasaka S et al (2006) Contribution of high-mobility group box-1 to the development of ventilator-induced lung injury. Am J Respir Crit Care Med 174:400–407

    Article  CAS  PubMed  Google Scholar 

  31. Putensen C, Wrigge H (2007) Tidal volumes in patients with normal lungs. One for all or the less, the better? Anesthesiology 106:1085–1087

    Article  PubMed  Google Scholar 

  32. Bernard GR, Artigas A, Brigham KL et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    CAS  PubMed  Google Scholar 

  33. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  34. Amato MB, Barbas CS, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Article  CAS  PubMed  Google Scholar 

  35. Hager DN, Krishnan JA, Hayden DL, Brower RG (2005) Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 172:1241–1245

    Article  PubMed  Google Scholar 

  36. Tenney SM, Remmers JE (1963) Comparative quantitative morphology of the mammalian lung: diffusing area. Nature 197:54–56

    Article  CAS  PubMed  Google Scholar 

  37. Feihl F, Eckert P, Brimioulle S et al (2000) Permissive hypercapnia impairs pulmonary gas exchange in the acute respiratory distress syndrome. Am J Respir Crit Care Med 162:209–215

    CAS  PubMed  Google Scholar 

  38. Villar J, Kacmarek RM, Perez-Mendez L et al (2006) A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 34:1311–1318

    Article  PubMed  Google Scholar 

  39. Brower RG, Lanken PN, MacIntyre N et al (2004) National Heart, Lung and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336

    Article  PubMed  Google Scholar 

  40. Phoenix SI, Paravastu S, Columb M et al (2009) Does a higher positive end expiratory pressure decrease mortality in acute respiratory distress syndrome? A systematic review and meta-analysis. Anesthesiology 110:1098–1105

    Article  PubMed  Google Scholar 

  41. Dhainaut J, Aouate P, Brunet FP et al (1989) Circulatory effect of positive end-expiratory pressure in patients with acute lung injury. In: Scharf SM, Cassidy SS (Hrsg) Heart-lung interaction in health and disease. Dekker, New York, S 809–838

  42. Hodgson C, Keating JL, Holland AE et al (2009) Recruitment manoeuvres for adults with acute lung injury receiving mechanical ventilation. Cochrane Database Syst Rev (2):CD006667

    Google Scholar 

  43. Brower RG, Morris A, MacIntyre N et al (2003) Effects of recruitment maneuvers in patients with acute lung injury and acute respiratory distress syndrome ventilated with high positive end-expiratory pressure. Crit Care Med 31:2592–2597

    Article  PubMed  Google Scholar 

  44. Fernández-Pérez ER, Sprung J, Afessa B et al (2009) Intraoperative ventilator settings and acute lung injury after elective surgery: a nested case control study. Thorax 64:121–127

    Article  PubMed  Google Scholar 

  45. Marini JJ, Ravenscraft SA (1992) Mean airway pressure: physiologic determinants and clinical importance. Part 2: Clinical implications. Crit Care Med 20:1604–1616

    Article  CAS  PubMed  Google Scholar 

  46. Pardos PC, Garutti I, Piñeiro P et al (2009) Effects of ventilatory mode during one-lung ventilation on intraoperative and postoperative arterial oxygenation in thoracic surgery. J Cardiothorac Vasc Anesth 23:770–774

    Article  PubMed  Google Scholar 

  47. Unzueta MC, Casas JI, Moral MV (2007) Pressure-controlled versus volume controlled ventilation during one-lung ventilation for thoracic surgery. Anesth Analg 104:1029–1033

    Article  PubMed  Google Scholar 

  48. Choi YS, Shim JK, Na S, Hong SB et al (2009) Pressure-controlled versus volume-controlled ventilation during one-lung ventilation in the prone position for robot-assisted esophagectomy. Surg Endosc 23:2286–2291

    Article  PubMed  Google Scholar 

  49. Esteban A, Alía I, Gordo F et al (2000) Prospective randomized trial comparing pressure-controlled ventilation and volume-controlled ventilation in ARDS. Chest 117:1690–1696

    Article  CAS  PubMed  Google Scholar 

  50. Edmark L, Kostova-Aherdan K, Enlund M, Hedenstierna G (2003) Optimal oxygen concentration during induction of general anesthesia. Anesthesiology 98:28–33

    Article  CAS  PubMed  Google Scholar 

  51. Herriger A, Frascarolo P, Spahn DR, Magnusson L (2004) The effect of positive airway pressure during pre-oxygenation and induction of anaesthesia upon duration of non-hypoxic apnoea. Anaesthesia 59:243–247

    Article  CAS  PubMed  Google Scholar 

  52. Myles PS, Leslie K, Chan MT et al (2007) Avoidance of nitrous oxide for patients undergoing major surgery: a randomized controlled trial. Anesthesiology 107:221–231

    Article  CAS  PubMed  Google Scholar 

  53. Turan A, Apfel CC, Kumpch M et al (2006) Does the efficacy of supplemental oxygen for the prevention of postoperative nausea and vomiting depend on the measured outcome, observational period or site of surgery? Anaesthesia 61:628–633

    Article  CAS  PubMed  Google Scholar 

  54. Garcia-Botello SA, Garcia-Granero E, Lillo R et al (2006) Randomized clinical trial to evaluate the effects of perioperative supplemental oxygen administration on the colorectal anastomosis. Br J Surg 93:698–706

    Article  CAS  PubMed  Google Scholar 

  55. Meyhoff CS, Wetterslev J, Jorgensen LN et al PROXI Trial Group (2009) Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA 302:1543–1550

    Article  CAS  PubMed  Google Scholar 

  56. Crapo RO, Morris AH, Clayton PD, Nixon CR (1982) Lung volumes in healthy nonsmoking adults. Bull Eur Physiopathol Respir 18:419–425

    CAS  PubMed  Google Scholar 

  57. Dreyfuss D, Richard J-D, Saumon G (2006) Ventilator induced lung injury. In: Tobin MJ (Hrsg) Principles and practice of mechanical ventilation. McGraw Hill, New York, S 903–930

  58. Bendixen HH, Hedley-Whyte J, Laver MB (1963) Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation. A concept of atelectasis. N Engl J Med 269:991–996

    CAS  PubMed  Google Scholar 

  59. Laux G (2008) Lungenphysiologie und Beatmung in Narkose. In: Roisssant R, Werner C, Zwissler B (Hrsg) Die Anästhesiologie. Springer, Berlin Heidelberg New York Tokio, S 578–592

  60. Striebel HW (2003) Formen der Allgemeinanästhesie. In: Striebel HW (Hrsg) Die Anästhesie. Schattauer, Stuttgart, S 207

  61. Larsen R (2002) Narkosesysteme und Narkosebeatmung. In: Larsen R (Hrsg) Anästhesie. Urban & Fischer, München, S 439

  62. Sprung J, Whalley DG, Falcone T et al (2003) The effects of tidal volume and respiratory rate on oxygenation and respiratory mechanics during laparoscopy in morbidly obese patients. Anesth Analg 97:268–274

    Article  PubMed  Google Scholar 

  63. Cai H, Gong H, Zhang L et al (2007) Effect of low tidal volume ventilation on atelectasis in patients during general anesthesia: a computed tomographic scan. J Clin Anesth 19:125–129

    Article  PubMed  Google Scholar 

  64. Lohser J (2008) Evidence-based management of one-lung ventilation. Anesthesiol Clin 26:241–272

    Article  PubMed  Google Scholar 

  65. Lytle FT, Brown DR (2008) Appropriate ventilatory settings for thoracic surgery: intraoperative and postoperative. Semin Cardiothorac Vasc Anesth 12:97–108

    Article  PubMed  Google Scholar 

  66. Grichnik KP, Shaw A (2009) Update on one-lung ventilation: the use of continuous positive airway pressure ventilation and positive end-expiratory pressure ventilation – clinical application. Curr Opin Anaesthesiol 22:23–30

    Article  PubMed  Google Scholar 

  67. Sentürk M (2006) New concepts of the management of one-lung ventilation. Curr Opin Anaesthesiol 19:1–4

    Article  PubMed  Google Scholar 

  68. Gama de Abreu M, Heintz M, Heller A et al (2003) One-lung ventilation with high tidal volumes and zero positive end-expiratory pressure is injurious in the isolated rabbit lung model. Anesth Analg 96:220–228

    Article  Google Scholar 

  69. Fernandez-Perez ER, Keegan MT, Brown DR et al (2006) Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology 105:14–18

    Article  PubMed  Google Scholar 

  70. Licker M, Diaper J, Villiger Y et al (2009) Impact of intraoperative lung-protective interventions in patients undergoing lung cancer surgery. Crit Care 13:R41

    Article  PubMed  Google Scholar 

  71. Schilling T, Kozian A, Huth C et al (2005) The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg 101:957–965

    Article  PubMed  Google Scholar 

  72. Michelet P, D’Journo XB, Roch A et al (2006) Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology 105:911–919

    Article  PubMed  Google Scholar 

  73. Wrigge H, Uhlig U, Zinserling J et al (2004) The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg 98:775–781

    Article  PubMed  Google Scholar 

  74. Schultz MJ, Haitsma JJ, Slutsky AS et al (2007) What tidal volumes should be used in patients without acute lung injury? Anesthesiology 106:1226–1231

    Article  PubMed  Google Scholar 

  75. Schultz MJ (2008) Lung-protective mechanical ventilation with lower tidal volumes in patients not suffering from acute lung injury: a review of clinical studies. Med Sci Monit 14:22–26

    Google Scholar 

  76. Wrigge H, Zinserling J, Stuber F et al (2000) Effects of mechanical ventilation on release of cytokines into systemic circulation in patients with normal pulmonary function. Anesthesiology 93:1413–1417

    Article  CAS  PubMed  Google Scholar 

  77. Koner O, Celebi S, Balci H et al (2004) Effects of protective and conventional mechanical ventilation on pulmonary function and systemic cytokine release after cardiopulmonary bypass. Intensive Care Med 30:620–626

    Article  PubMed  Google Scholar 

  78. Wrigge H, Uhlig U, Baumgarten G et al (2005) Mechanical ventilation strategies and inflammatory responses to cardiac surgery: a prospective randomized clinical trial. Intensive Care Med 31:1379–1387

    Article  PubMed  Google Scholar 

  79. Zupancich E, Paparella D, Turani F et al (2005) Mechanical ventilation affects inflammatory mediators in patients undergoing cardiopulmonary bypass for cardiac surgery: a randomized clinical trial. J Thorac Cardiovasc Surg 130:378–383

    Article  PubMed  Google Scholar 

  80. Reis Miranda D, Gommers D, Struijs A et al (2005) Ventilation according to the open lung concept attenuates pulmonary inflammatory response in cardiac surgery. Eur J Cardiothorac Surg 28:889–895

    Article  Google Scholar 

  81. Choi G, Wolthuis EK, Bresser P et al (2006) Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology 105:689–695

    Article  PubMed  Google Scholar 

  82. Wolthuis EK, Choi G, Dessing MC et al (2008) Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology 108:46–54

    Article  PubMed  Google Scholar 

  83. Determann RM, Wolthuis EK, Choi G et al (2008) Lung epithelial injury markers are not influenced by use of lower tidal volumes during elective surgery in patients without preexisting lung injury. Am J Physiol Lung Cell Mol Physiol 294:L344–L350

    Article  CAS  PubMed  Google Scholar 

  84. Ware LB (2006) Pathophysiology of acute lung injury and the acute respiratory distress syndrome. Semin Respir Crit Care Med 27:337–349

    Article  PubMed  Google Scholar 

  85. Perl M, Chung CS, Perl U et al (2007) Beneficial versus detrimental effects of neutrophils are determined by the nature of the insult. J Am Coll Surg 204:840–852

    Article  PubMed  Google Scholar 

  86. Fernández-Pérez ER, Sprung J, Afessa B et al (2009) Intraoperative ventilator settings and acute lung injury after elective surgery: a nested case control study. Thorax 64:121–127

    Article  PubMed  Google Scholar 

  87. Fleischmann E, Herbst F, Kugener A et al (2006) Mild hypercapnia increases subcutaneous and colonic oxygen tension in patients given 80% inspired oxygen during abdominal surgery. Anesthesiology 104:944–949

    Article  PubMed  Google Scholar 

  88. Rothen HU, Sporre B, Engberg G et al (1993) Reexpansion of atelectasis during general anaesthesia: a computed tomography study. Br J Anaesth 71:788–795

    Article  CAS  PubMed  Google Scholar 

  89. Puls A, Pollok-Kopp B, Wrigge H et al (2006) Effects of a single lung recruitment maneuver on the systemic release of inflammatory mediators. Intensive Care Med 32:1080–1085

    Article  CAS  PubMed  Google Scholar 

  90. Paolo Pelosi P, Rocco P (2007) Airway closure: the silent killer of peripheral airways. Critical Care 11:114

    Article  Google Scholar 

  91. Tokics L, Hedenstierna G, Strandberg A et al (1987) Lung collapse and gas-exchange during general anesthesia: effects of spontaneous breathing, muscle paralysis and positive end-expiratory pressure. Anesthesiology 66:157–167

    Article  CAS  PubMed  Google Scholar 

  92. Pelosi P, Ravagnan I, Giurati G et al (1999) Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology 91:1221–1231

    Article  CAS  PubMed  Google Scholar 

  93. Hedenstierna G, Baehrendtz S, Klingstedt C et al (1984) Ventilation and perfusion of each lung during differential ventilation with selective PEEP. Anesthesiology 61:369–376

    Article  CAS  PubMed  Google Scholar 

  94. Reinius H, Jonsson L, Gustafsson S et al (2009) Prevention of atelectasis in morbidly obese patients during general anesthesia and paralysis: a computerized tomography study. Anesthesiology 111:979–987

    Article  PubMed  Google Scholar 

  95. Maisch S, Reissmann H, Fuellekrug B et al (2008) Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients. Anesth Analg 106:175–181

    Article  PubMed  Google Scholar 

  96. Suarez-Sipmann F, Böhm SH, Tusman G et al (2007) Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med 35:214–221

    Article  PubMed  Google Scholar 

  97. Caramez MP, Kacmarek RM, Helmy M et al (2009) A comparison of methods to identify open-lung PEEP. Intensive Care Med 35:740–747

    Article  PubMed  Google Scholar 

  98. Determann RM, Royakkers A, Wolthuis EK et al (2010) Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care 14:R1

    Article  PubMed  Google Scholar 

Download references

Interessenskonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. David.

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, M., Bodenstein, M. & Markstaller, K. Protektive Beatmungstherapie. Anaesthesist 59, 595–606 (2010). https://doi.org/10.1007/s00101-010-1743-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-010-1743-5

Schlüsselwörter

Keywords

Navigation