Der Anaesthesist

, Volume 59, Issue 4, pp 347–370 | Cite as

Prävention, Diagnose, Therapie und Nachsorge der Sepsis

Erste Revision der S2k-Leitlinien der Deutschen Sepsis-Gesellschaft e.V. (DSG) und der Deutschen Interdisziplinären Vereinigung für Intensiv- und Notfallmedizin (DIVI)
  • K. Reinhart
  • F.M.  Brunkhorst
  • H.-G. Bone
  • J.  Bardutzky
  • C.-E. Dempfle
  • H. Forst
  • P. Gastmeier
  • H. Gerlach
  • M. Gründling
  • S. John
  • W. Kern
  • G. Kreymann
  • W. Krüger
  • P. Kujath
  • G. Marggraf
  • J. Martin
  • K. Mayer
  • A. Meier-Hellmann
  • M. Oppert
  • C. Putensen
  • M. Quintel
  • M. Ragaller
  • R. Rossaint
  • H. Seifert
  • C. Spies
  • F. Stüber
  • N. Weiler
  • A. Weimann
  • K. Werdan
  • T. Welte
Leitlinien und Empfehlungen

Infobox 2

Unter Mitwirkung vonmedizinisch-wissenschaftliche Fachgesellschaften:

Deutsche Gesellschaft für Chirurgie (DGCH; [P.K.]), Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI; [R.R.]), Deutsche Gesellschaft für Herz-, Thorax- und Gefäßchirurgie (DGHTG; [G.M.]), Deutsche Gesellschaft für Internistische Intensivmedizin und Notfallmedizin (DGIIN; [T.W.]), Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin (DGP; [T.W.]), Deutsche Gesellschaft für Ernährungsmedizin (DGEM; [A.W.]), Deutsche Gesellschaft für Neurologie (DGN; [J.B.]), Deutsche Gesellschaft für Kardiologie (DGK; [K.W.]), Deutsche Gesellschaft für Innere Medizin (DGIM; [K.W.]), Deutsche Gesellschaft für Infektiologie (DGI; [W.K.]), Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen (NRZ; [P.G.]), Deutsche Gesellschaft für Nephrologie (DGfN; [S.J., M.O.]), Deutsche Gesellschaft für Hygiene und Mikrobiologie e.V. (DGHM; [H.S.]), Deutsche Gesellschaft für Klinische Chemie und...

Prevention, diagnosis, treatment, and follow-up care of sepsis

First revision of the S2k Guidelines of the German Sepsis Society (DSG) and the German Interdisciplinary Association for Intensive and Emergency Care Medicine (DIVI)



Der korrespondierende Autor weist auf folgende Beziehungen hin: Beraterverträge mit BRAHMS Diagnostic, Roche Diagnostics, E. Lilly, SIRS-Lab-Jena.


  1. 1.
    Yusuf S, Teo K, Woods K (1993) Intravenous magnesium in acute myocardial infarction. An effective, safe, simple, and inexpensive intervention. Circulation 87(6):2043–2046PubMedGoogle Scholar
  2. 2.
    ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group (1995) ISIS-4: a randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. Lancet 345(8951):669–685Google Scholar
  3. 3.
    Sackett DL (1989) Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest 95 [Suppl 2]:2S–4SGoogle Scholar
  4. 4.
    Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348(16):1546–1554PubMedCrossRefGoogle Scholar
  5. 5.
    Bates DW, Cook EF, Goldman L, Lee TH (1990) Predicting bacteremia in hospitalized patients. A prospectively validated model. Ann Intern Med 113(7):495–500PubMedGoogle Scholar
  6. 6.
    Bates DW, Sands K, Miller E et al (1997) Predicting bacteremia in patients with sepsis syndrome. Academic Medical Center Consortium Sepsis Project Working Group. J Infect Dis 176(6):1538–1551PubMedCrossRefGoogle Scholar
  7. 7.
    Crowe M, Ispahani P, Humphreys H et al (1998) Bacteraemia in the adult intensive care unit of a teaching hospital in Nottingham, UK, 1985–1996. Eur J Clin Microbiol Infect Dis 17(6):377–384PubMedGoogle Scholar
  8. 8.
    Leibovici L, Greenshtain S, Cohen O et al (1991) Bacteremia in febrile patients. A clinical model for diagnosis. Arch Intern Med 151(9):1801–1806PubMedCrossRefGoogle Scholar
  9. 9.
    Vincent JL, Bihari DJ, Suter PM et al (1995) The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) study. EPIC International Advisory Committee. JAMA 274(8):639–644PubMedCrossRefGoogle Scholar
  10. 10.
    Alberti C, Brun-Buisson C, Burchardi H et al (2002) Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med 28(2):108–121PubMedCrossRefGoogle Scholar
  11. 11.
    ACCP/SCCM Consensus Conference Committee (1992) Definition for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20(6):864–874CrossRefGoogle Scholar
  12. 12.
    Garner JS, Jarvis WR, Emori TG et al (1996) CDC definitions for nosocomial infections. In: Olmsted RN (ed) PIC infection control and applied epidemiology: principles and practice. Mosby, St. Louis, pp A1–A20Google Scholar
  13. 13.
    Clec’h C, Ferriere F, Karoubi P et al (2004) Diagnostic and prognostic value of procalcitonin in patients with septic shock. Crit Care Med 32(5):1166–1169CrossRefGoogle Scholar
  14. 14.
    Harbarth S, Holeckova K, Froidevaux C et al (2001) Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med 164(3):396–402PubMedGoogle Scholar
  15. 15.
    Müller B, Becker KL, Schächinger H et al (2000) Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Crit Care Med 28(4):977–983PubMedCrossRefGoogle Scholar
  16. 16.
    Brunkhorst FM, Wegscheider K, Forycki ZF, Brunkhorst R (2000) Procalcitonin for early diagnosis and differentiation of SIRS, sepsis, severe sepsis, and septic shock. Intensive Care Med 26 [Suppl 2]:S148–S152Google Scholar
  17. 17.
    Meisner M, Tschaikowsky K, Hutzler A et al (1998) Postoperative plasma concentrations of procalcitonin after different types of surgery. Intensive Care Med 24(7):680–684PubMedCrossRefGoogle Scholar
  18. 18.
    Nobre V, Harbarth S, Graf JD et al (2008) Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med 177(5):498–505PubMedCrossRefGoogle Scholar
  19. 19.
    Gramm HJ, Hannemann L, Reinhart K, Lode H (1995) Sepsis: ein Begriff im Wandel. Möglichkeiten und Grenzen der Diagnose anhand klinischer Kriterien. Dtsch Med Wochenschr 120(14):498–502PubMedGoogle Scholar
  20. 20.
    Smith-Elekes S, Weinstein MP (1993) Blood cultures. Infect Dis Clin North Am 7(2):221–234PubMedGoogle Scholar
  21. 21.
    Dandona P, Nix D, Wilson MF et al (1994) Procalcitonin increase after endotoxin injection in normal subjects. J Clin Endocrinol Metab 79(6):1605–1608PubMedCrossRefGoogle Scholar
  22. 22.
    Reimer LG, Wilson ML, Weinstein MP (1997) Update on detection of bacteremia and fungemia. Clin Microbiol Rev 10(3):444–465PubMedGoogle Scholar
  23. 23.
    Dellinger RP, Carlet J, Masur H et al (2004) Surviving sepsis campaign for management of severe sepsis and septic shock. Crit Care Med 32:858–872PubMedCrossRefGoogle Scholar
  24. 24.
    Shafazand S, Weinacker AB (2002) Blood cultures in the critical care unit: improving utilization and yield. Chest 122(5):1727–1736PubMedCrossRefGoogle Scholar
  25. 25.
    Darby JM, Linden P, Pasculle W, Saul M (1997) Utilization and diagnostic yield of blood cultures in a surgical intensive care unit. Crit Care Med 25(6):989–994PubMedCrossRefGoogle Scholar
  26. 26.
    Shahar E, Wohl-Gottesman BS, Shenkman L (1990) Contamination of blood cultures during venepuncture: fact or myth? Postgrad Med J 66(782):1053–1058PubMedCrossRefGoogle Scholar
  27. 27.
    Souvenir D, Anderson DE Jr, Palpant S et al (1998) Blood cultures positive for coagulase-negative staphylococci: antisepsis, pseudobacteremia, and therapy of patients. J Clin Microbiol 36(7):1923–1926PubMedGoogle Scholar
  28. 28.
    Martinez JA, DesJardin JA, Aronoff M et al (2002) Clinical utility of blood cultures drawn from central venous or arterial catheters in critically ill surgical patients. Crit Care Med 30(1):7–13PubMedCrossRefGoogle Scholar
  29. 29.
    Wilson ML (1996) General principles of specimen collection and transport. Clin Infect Dis 22(5):766–777PubMedGoogle Scholar
  30. 30.
    Spitalnic SJ, Woolard RH, Mermel LA (1995) The significance of changing needles when inoculating blood cultures: a meta-analysis. Clin Infect Dis 21(5):1103–1106PubMedGoogle Scholar
  31. 31.
    Weinstein MP, Towns ML, Quartey SM et al (1997) The clinical significance of positive blood cultures in the 1990s: a prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin Infect Dis 24(4):584–602PubMedGoogle Scholar
  32. 32.
    Washington JA 2nd (1975) Blood cultures: principles and techniques. Mayo Clin Proc 50(2):91–98PubMedGoogle Scholar
  33. 33.
    Li J, Plorde JJ, Carlson LG (1994) Effects of volume and periodicity on blood cultures. J Clin Microbiol 32(11):2829–2831PubMedGoogle Scholar
  34. 34.
    Seifert H, Abele-Horn M, Fätkenheuer G et al (2007) MiQ 3a: Blutkulturdiagnostik Sepsis, Endokarditis, Katheterinfektionen, Teil I. Urban & Fischer, MünchenGoogle Scholar
  35. 35.
    Bloos F, Hinder F, Becker K et al (2010) A multicenter trial to compare blood culture with polymerase chain reaction in severe human sepsis. Intensive Care Med 36(2):241–247PubMedCrossRefGoogle Scholar
  36. 36.
    Lehmann LE, Alvarez J, Hunfeld KP et al (2009) Potential clinical utility of polymerase chain reaction in microbiological testing for sepsis. Crit Care Med 37(12):3085–3090PubMedCrossRefGoogle Scholar
  37. 37.
    Louie RF, Tang Z, Albertson TE et al (2008) Multiplex polymerase chain reaction detection enhancement of bacteremia and fungemia. Crit Care Med 36(5):1487–1492PubMedCrossRefGoogle Scholar
  38. 38.
    Schrenzel J (2007) Clinical relevance of new diagnostic methods for bloodstream infections. Int J Antimicrob Agents 30 [Suppl 1]:S2–S6Google Scholar
  39. 39.
    American Thoracic Society, Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171(4):388–416CrossRefGoogle Scholar
  40. 40.
    Hoffken G, Lorenz J, Kern W et al (2005) S3-guideline on ambulant acquired pneumonia and deep airway infections. Pneumologie 59(9):612–664PubMedCrossRefGoogle Scholar
  41. 41.
    Langer M, Cigada M, Mandelli M et al (1987) Early onset pneumonia: a multicenter study in intensive care units. Intensive Care Med 13(5):342–346PubMedCrossRefGoogle Scholar
  42. 42.
    Gastmeier P, Sohr D, Geffers C et al (2009) Early- and late-onset pneumonia: is this still a useful classification? Antimicrob Agents Chemother 53(7):2714–2718PubMedCrossRefGoogle Scholar
  43. 43.
    Wunderink RG (2000) Clinical criteria in the diagnosis of ventilator-associated pneumonia. Chest 117 [4 Suppl 2]:191S–194SGoogle Scholar
  44. 44.
    Singh N, Rogers P, Atwood CW et al (2000) Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med 162(2 Pt 1):505–511PubMedGoogle Scholar
  45. 45.
    Fartoukh M, Maitre B, Honore S et al (2003) Diagnosing pneumonia during mechanical ventilation: the clinical pulmonary infection score revisited. Am J Respir Crit Care Med 168(2):173–179PubMedCrossRefGoogle Scholar
  46. 46.
    Ramirez P, Garcia MA, Ferrer M et al (2008) Sequential measurements of procalcitonin levels in diagnosing ventilator-associated pneumonia. Eur Respir J 31(2):356–362PubMedCrossRefGoogle Scholar
  47. 47.
    Michel F, Franceschini B, Berger P et al (2005) Early antibiotic treatment for BAL-confirmed ventilator-associated pneumonia: a role for routine endotracheal aspirate cultures. Chest 127(2):589–597PubMedCrossRefGoogle Scholar
  48. 48.
    Luyt CE, Chastre J, Fagon JY (2004) Value of the clinical pulmonary infection score for the identification and management of ventilator-associated pneumonia. Intensive Care Med 30(5):844–852PubMedCrossRefGoogle Scholar
  49. 49.
    Canadian Critical Care Trials Group (2006) A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med 355(25):2619–2630CrossRefGoogle Scholar
  50. 50.
    Torres A, El-Ebiary M (2000) Bronchoscopic BAL in the diagnosis of ventilator-associated pneumonia. Chest 117 [4 Suppl 2]:198S–202SGoogle Scholar
  51. 51.
    Cook D, Mandell L (2000) Endotracheal aspiration in the diagnosis of ventilator-associated pneumonia. Chest 117 [4 Suppl 2]:195S–197SGoogle Scholar
  52. 52.
    Mauch H, Wagner J (1999) MiQ – Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik. Heft 7: Infektionen der tiefen Atemwege, Teil 1. Urban & Fischer, MünchenGoogle Scholar
  53. 53.
    Gerbeaux P, Ledoray V, Boussuges A et al (1998) Diagnosis of nosocomial pneumonia in mechanically ventilated patients: repeatability of the bronchoalveolar lavage. Am J Respir Crit Care Med 157(1):76–80PubMedGoogle Scholar
  54. 54.
    Llewelyn M, Cohen J (2001) Diagnosis of infection in sepsis. Intensive Care Med 27 [Suppl 1]:S10–S32Google Scholar
  55. 55.
    Carratala J, Gudiol F, Pallares R et al (1994) Risk factors for nosocomial Legionella pneumophila pneumonia. Am J Respir Crit Care Med 149(3 Pt 1):625–629PubMedGoogle Scholar
  56. 56.
    Dobbins BM, Kite P, Wilcox MH (1999) Diagnosis of central venous catheter related sepsis – a critical look inside. J Clin Pathol 52(3):165–172PubMedCrossRefGoogle Scholar
  57. 57.
    Sherertz RJ (1996) Surveillance for infections associated with vascular catheters. Infect Control Hosp Epidemiol 17(11):746–752PubMedCrossRefGoogle Scholar
  58. 58.
    Blot F, Nitenberg G, Chachaty E et al (1999) Diagnosis of catheter-related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet 354(9184):1071–1077PubMedCrossRefGoogle Scholar
  59. 59.
    Tanguy M, Seguin P, Laviolle B et al (2005) Hub qualitative blood culture is useful for diagnosis of catheter-related infections in critically ill patients. Intensive Care Med 31(5):645–648PubMedCrossRefGoogle Scholar
  60. 60.
    Catton JA, Dobbins BM, Kite P et al (2005) In situ diagnosis of intravascular catheter-related bloodstream infection: a comparison of quantitative culture, differential time to positivity, and endoluminal brushing. Crit Care Med 33(4):787–791PubMedCrossRefGoogle Scholar
  61. 61.
    Raad, II, Baba M, Bodey GP (1995) Diagnosis of catheter-related infections: the role of surveillance and targeted quantitative skin cultures. Clin Infect Dis 20(3):593–597PubMedGoogle Scholar
  62. 62.
    Cobb DK, High KP, Sawyer RG et al (1992) A controlled trial of scheduled replacement of central venous and pulmonary-artery catheters. N Engl J Med 327(15):1062–1068PubMedGoogle Scholar
  63. 63.
    Cook D, Randolph A, Kernerman P et al (1997) Central venous catheter replacement strategies: a systematic review of the literature. Crit Care Med 25(8):1417–1424PubMedCrossRefGoogle Scholar
  64. 64.
    Eyer S, Brummitt C, Crossley K et al (1990) Catheter-related sepsis: prospective, randomized study of three methods of long-term catheter maintenance. Crit Care Med 18(10):1073–1079PubMedCrossRefGoogle Scholar
  65. 65.
    Brook I, Frazier EH (1998) Aerobic and anaerobic microbiology of retroperitoneal abscesses. Clin Infect Dis 26(4):938–941PubMedCrossRefGoogle Scholar
  66. 66.
    Nichols RL, Smith JW (1993) Wound and intraabdominal infections: microbiological considerations and approaches to treatment. Clin Infect Dis 16 [Suppl 4]:S266–S272Google Scholar
  67. 67.
    Brook I, Frazier EH (1999) Microbiology of subphrenic abscesses: a 14-year experience. Am Surg 65(11):1049–1053PubMedGoogle Scholar
  68. 68.
    Marshall JC, Innes M (2003) Intensive care unit management of intra-abdominal infection. Crit Care Med 31(8):2228–2237PubMedCrossRefGoogle Scholar
  69. 69.
    Büchner T, Fegeler W, Bernhardt H et al (2002) Treatment of severe Candida infections in high-risk patients in Germany: consensus formed by a panel of interdisciplinary investigators. Eur J Clin Microbiol Infect Dis 21(5):337–352PubMedCrossRefGoogle Scholar
  70. 70.
    Blumberg HM, Jarvis WR, Soucie JM et al (2001) Risk factors for candidal bloodstream infections in surgical intensive care unit patients: the NEMIS prospective multicenter study. The National Epidemiology of Mycosis Survey. Clin Infect Dis 33(2):177–186PubMedCrossRefGoogle Scholar
  71. 71.
    Petri MG, Konig J, Moecke HP et al (1997) Epidemiology of invasive mycosis in ICU patients: a prospective multicenter study in 435 non-neutropenic patients. Paul-Ehrlich Society for Chemotherapy, Divisions of Mycology and Pneumonia Research. Intensive Care Med 23(3):317–325PubMedCrossRefGoogle Scholar
  72. 72.
    Pappas PG, Rex JH, Sobel JD et al (2004) Guidelines for treatment of candidiasis. Clin Infect Dis 38(2):161–189PubMedCrossRefGoogle Scholar
  73. 73.
    Richards M, Thursky K, Buising K (2003) Epidemiology, prevalence, and sites of infections in intensive care units. Semin Respir Crit Care Med 24(1):3–22PubMedCrossRefGoogle Scholar
  74. 74.
    Wildemann B (2005) Meningitis. Fortschr Neurol Psychiatr 73(2):102–117; quiz 118–119PubMedCrossRefGoogle Scholar
  75. 75.
    Beek D van de, Gans J de, Spanjaard L et al (2004) Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med 351(18):1849–1859PubMedCrossRefGoogle Scholar
  76. 76.
    Tunkel AR, Hartman BJ, Kaplan SL et al (2004) Practice guidelines for the management of bacterial meningitis. Clin Infect Dis 39(9):1267–1284PubMedCrossRefGoogle Scholar
  77. 77.
    Diener HC, Ackermann H (2005) Leitlinien für Diagnostik und Therapie in der Neurologie. Thieme, StuttgartGoogle Scholar
  78. 78.
    Beckham JD, Tyler KL (2006) Initial management of acute bacterial meningitis in adults: summary of IDSA guidelines. Rev Neurol Dis 3(2):57–60PubMedGoogle Scholar
  79. 79.
    Hasbun R, Abrahams J, Jekel J, Quagliarello VJ (2001) Computed tomography of the head before lumbar puncture in adults with suspected meningitis. N Engl J Med 345(24):1727–1733PubMedCrossRefGoogle Scholar
  80. 80.
    Begg N, Cartwright KA, Cohen J et al (1999) Consensus statement on diagnosis, investigation, treatment and prevention of acute bacterial meningitis in immunocompetent adults. British Infection Society Working Party. J Infect 39(1):1–15PubMedCrossRefGoogle Scholar
  81. 81.
    Aronin SI, Peduzzi P, Quagliarello VJ (1998) Community-acquired bacterial meningitis: risk stratification for adverse clinical outcome and effect of antibiotic timing. Ann Intern Med 129(11):862–869PubMedGoogle Scholar
  82. 82.
    Dunbar SA, Eason RA, Musher DM, Clarridge JE 3rd (1998) Microscopic examination and broth culture of cerebrospinal fluid in diagnosis of meningitis. J Clin Microbiol 36(6):1617–1620PubMedGoogle Scholar
  83. 83.
    Karandanis D, Shulman JA (1976) Recent survey of infectious meningitis in adults: review of laboratory findings in bacterial, tuberculous, and aseptic meningitis. South Med J 69(4):449–457PubMedGoogle Scholar
  84. 84.
    La Scolea LJ Jr, Dryja D (1984) Quantitation of bacteria in cerebrospinal fluid and blood of children with meningitis and its diagnostic significance. J Clin Microbiol 19(2):187–190Google Scholar
  85. 85.
    Poppert S, Essig A, Stoehr B et al (2005) Rapid diagnosis of bacterial meningitis by real-time PCR and fluorescence in situ hybridization. J Clin Microbiol 43(7):3390–3397PubMedCrossRefGoogle Scholar
  86. 86.
    Tarafdar K, Rao S, Recco RA, Zaman MM (2001) Lack of sensitivity of the latex agglutination test to detect bacterial antigen in the cerebrospinal fluid of patients with culture-negative meningitis. Clin Infect Dis 33(3):406–408PubMedCrossRefGoogle Scholar
  87. 87.
    Gans J de, Beek D van de (2002) Dexamethasone in adults with bacterial meningitis. N Engl J Med 347(20):1549–1556PubMedCrossRefGoogle Scholar
  88. 88.
    Beek D van de, Gans J de, McIntyre P, Prasad K (2004) Steroids in adults with acute bacterial meningitis: a systematic review. Lancet Infect Dis 4(3):139–143PubMedCrossRefGoogle Scholar
  89. 89.
    Beek D van de, Gans J de, McIntyre P, Prasad K (2007) Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev (1):CD004405Google Scholar
  90. 90.
    Molyneux EM, Walsh AL, Forsyth H et al (2002) Dexamethasone treatment in childhood bacterial meningitis in Malawi: a randomised controlled trial. Lancet 360(9328):211–218PubMedCrossRefGoogle Scholar
  91. 91.
    Scarborough M, Gordon SB, Whitty CJ et al (2007) Corticosteroids for bacterial meningitis in adults in sub-Saharan Africa. N Engl J Med 357(24):2441–2450PubMedCrossRefGoogle Scholar
  92. 92.
    Joiner GA, Salisbury D, Bollin GE (1996) Utilizing quality assurance as a tool for reducing the risk of ventilator-associated pneumonia. Am J Med Qual 11:100–103PubMedCrossRefGoogle Scholar
  93. 93.
    Zack J, Garrison T, Trovillion E et al (2002) Effect of an education program aimed at reducing the occurence of ventilator-associated pneumonia. Crit Care Med 30:2407–2412PubMedCrossRefGoogle Scholar
  94. 94.
    Salahuddin N, Zafar A, Sukhyani L et al (2004) Reducing ventilator-associated pneumonia rates through a staff education programme. J Hosp Infect 57:223–227PubMedCrossRefGoogle Scholar
  95. 95.
    Babcock HM, Zack JE, Garrison T et al (2004) An educational intervention to reduce ventilator-associated pneumonia in an integrated health system: a comparison of effects. Chest 125(6):2224–2231PubMedCrossRefGoogle Scholar
  96. 96.
    Cocanour C, Peninger M, Domonoske B et al (2006) Decreasing ventilator-associated pneumonia in a trauma ICU. J Trauma 61:122–129PubMedCrossRefGoogle Scholar
  97. 97.
    Jain M, Miller L, Belt D et al (2006) Decline in ICU adverse events, nosocomial infections and cost through a quality improvement initiative focusing on teamwork and culture change. Qual Saf Health Care 15:235–239PubMedCrossRefGoogle Scholar
  98. 98.
    Warren D, Zack J, Cox M et al (2003) An educational intervention to prevent catheter-associated bloodstream infections in a nonteaching, community medical center. Crit Care Med 31:1959–1963PubMedCrossRefGoogle Scholar
  99. 99.
    Warren D, Zack J, Mayfield J et al (2004) The effect of an education program on the incidence of central venous catheter-associated bloodstream infection in a medical ICU. Chest 126:1612–1618PubMedCrossRefGoogle Scholar
  100. 100.
    Berenholtz S, Pronovost P, Lipsett P et al (2004) Eliminating catheter-related bloodstream infections in the intensive care unit. Crit Care Med 32:2014–2020PubMedCrossRefGoogle Scholar
  101. 101.
    Pronovost P, Needham D, Berenholtz S et al (2006) An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 355(26):2725–2732PubMedCrossRefGoogle Scholar
  102. 102.
    Stephan F, Sax H, Wachsmuth M et al (2006) Reduction of urinary tract infection and antibiotic use after surgery: a controlled, prospective, before-after intervention study. Clin Infect Dis 42:1544–1551PubMedCrossRefGoogle Scholar
  103. 103.
    Anonymous (2008) CDC definitions. Scholar
  104. 104.
    Nationales Referenzzentrum für die Surveillance von nosokomialen Infektionen. http://www.nrz-hygiene.deGoogle Scholar
  105. 105.
    Gastmeier P, Geffers C, Brandt C et al (2006) Effectiveness of a nationwide nosocomial infection surveillance system for reducing nosocomial infections. J Hosp Infect 64(1):16–22PubMedCrossRefGoogle Scholar
  106. 106.
    Boyce JM, Pittet D (2002) Guideline for hand hygiene in health-care settings. Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Society for Healthcare Epidemiology of America/Association for Professionals in Infection Control/Infectious Diseases Society of America. MMWR Recomm Rep 51(RR-16):1–45, quiz CE1–CE4Google Scholar
  107. 107.
    Pittet D, Hugonnet S, Harbarth S et al (2000) Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. Infection control programme. Lancet 356(9238):1307–1312PubMedCrossRefGoogle Scholar
  108. 108.
    Vernaz N, Sax H, Pittet D et al (2008) Temporal effects of antibiotic use and hand rub consumption on the incidence of MRSA and Clostridium difficile. J Antimicrob Chemother 62(3):601–607PubMedCrossRefGoogle Scholar
  109. 109.
    Raad II, Hohn DC, Gilbreath BJ et al (1994) Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect Control Hosp Epidemiol 15(4 Pt 1):231–238PubMedCrossRefGoogle Scholar
  110. 110.
    Parienti C, Lederle F, Impola C, Peterson L (1994) Reduction of unnecessary intravenous catheter use: internal medicine house staff participate in a successful quality improvement project. Arch Intern Med 154:1829–1832CrossRefGoogle Scholar
  111. 111.
    Dezfulian C, Shojania K, Collard H et al (2005) Subglottic secretion drainage for preventing ventilator-associated pneumonia: a meta-analysis. Am J Med 118:11–18PubMedCrossRefGoogle Scholar
  112. 112.
    Lorente L, Lecuona M, Jimenez A et al (2007) Influence of an endotracheal tube with polyurethane cuff and subglottic secretion drainage on pneumonia. Am J Respir Crit Care Med 176(11):1079–1083PubMedCrossRefGoogle Scholar
  113. 113.
    Drakulovic MB, Torres A, Bauer TT et al (1999) Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet 354(9193):1851–1858PubMedCrossRefGoogle Scholar
  114. 114.
    Kollef MH (1993) Ventilator-associated pneumonia. A multivariate analysis. JAMA 270(16):1965–1970PubMedCrossRefGoogle Scholar
  115. 115.
    Cook D, De Jonghe B, Brochard L, Brun-Buisson C (1998) Influence of airway management on ventilator-associated pneumonia: evidence from randomized trials. JAMA 279(10):781–787PubMedCrossRefGoogle Scholar
  116. 116.
    Ibanez J, Penafiel A, Raurich JM et al (1992) Gastroesophageal reflux in intubated patients receiving enteral nutrition: effect of supine and semirecumbent positions. JPEN J Parenter Enteral Nutr 16(5):419–422PubMedCrossRefGoogle Scholar
  117. 117.
    Iregui MG, Vaughan WM, Kollef MH (2002) Nonpharmacological prevention of hospital-acquired pneumonia. Semin Respir Crit Care Med 23(5):489–496PubMedCrossRefGoogle Scholar
  118. 118.
    Orozco-Levi M, Torres A, Ferrer M et al (1995) Semirecumbent position protects from pulmonary aspiration but not completely from gastroesophageal reflux in mechanically ventilated patients. Am J Respir Crit Care Med 152(4 Pt 1):1387–1390PubMedGoogle Scholar
  119. 119.
    Torres A, Serra-Batlles J, Ros E et al (1992) Pulmonary aspiration of gastric contents in patients receiving mechanical ventilation: the effect of body position. Ann Intern Med 116(7):540–543PubMedGoogle Scholar
  120. 120.
    Girou E, Buu-Hoi A, Stephan F et al (2004) Airway colonisation in long-term mechanically ventilated patients. Effect of semi-recumbent position and continuous subglottic suctioning. Intensive Care Med 30(2):225–233PubMedCrossRefGoogle Scholar
  121. 121.
    Nieuwenhoven CA van, Vandenbroucke-Grauls C, Tiel FH van et al (2006) Feasibility and effects of the semirecumbent position to prevent ventilator-associated pneumonia: a randomized study. Crit Care Med 34(2):396–402PubMedCrossRefGoogle Scholar
  122. 122.
    Lewis S, Egger M, Sylvester P, Thomas S (2001) Early enteral feeding versus „nil by mouth“ after gastrointestinal surgery: systematic review and meta-analysis of controlled trails. BMJ 323:773–776PubMedCrossRefGoogle Scholar
  123. 123.
    Weimann A, Braga M, Harsanyi L et al (2006) ESPEN guidelines on enteral nutrition: surgery including organ transplantation. Clin Nutr 25(2):224–244PubMedCrossRefGoogle Scholar
  124. 124.
    Heyland D, Novak F, Drover J et al (2001) Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 286:944–953PubMedCrossRefGoogle Scholar
  125. 125.
    Heys S, Walker L, Smith I, Eremin O (1999) Enteral nutritional supplementation with key nutrients in patients with critical illness and cancer: a meta-analysis of randomized controlled clinical trials. Ann Surg 229:467–477PubMedCrossRefGoogle Scholar
  126. 126.
    Wiener RS, Wiener DC, Larson RJ (2008) Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA 300(8):933–944PubMedCrossRefGoogle Scholar
  127. 127.
    Berghe G van den, Wouters P, Weekers F et al (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345(19):1359–1367PubMedCrossRefGoogle Scholar
  128. 128.
    Krinsley JS (2004) Effect of an intensive glucose management protocol on the mortality of critically ill adult patients. Mayo Clin Proc 79(8):992–1000PubMedCrossRefGoogle Scholar
  129. 129.
    Berghe G van den et al (2005) Intensive insulin therapy study in medical intensive care patients. 18th Annual Congress of the European Society of Intensive Care Medicine (ESICM), 25.–28.09.2005, AmsterdamGoogle Scholar
  130. 130.
    Finfer S, Chittock DR, Su SY et al (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360(13):1283–1297PubMedCrossRefGoogle Scholar
  131. 131.
    Griesdale DE, Souza RJ de, Dam RM van et al (2009) Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ 180(8):821–827PubMedGoogle Scholar
  132. 132.
    Brunkhorst FM, Wahl HG (2006) Blood glucose measurements in the critically ill: more than just a blood draw. Crit Care 10(6):178PubMedCrossRefGoogle Scholar
  133. 133.
    Clement S, Braithwaite SS, Magee MF et al (2004) Management of diabetes and hyperglycemia in hospitals. Diabetes Care 27(2):553–591PubMedCrossRefGoogle Scholar
  134. 134.
    Nathens AB, Marshall JC (1999) Selective decontamination of the digestive tract in surgical patients: a systematic review of the evidence. Arch Surg 134(2):170–176PubMedCrossRefGoogle Scholar
  135. 135.
    Silvestri L, Saene HK van, Milanese M et al (2007) Selective decontamination of the digestive tract reduces bacterial bloodstream infection and mortality in critically ill patients. Systematic review of randomized, controlled trials. J Hosp Infect 65(3):187–203PubMedCrossRefGoogle Scholar
  136. 136.
    Krueger WA, Lenhart FP, Neeser G et al (2002) Influence of combined intravenous and topical antibiotic prophylaxis on the incidence of infections, organ dysfunctions, and mortality in critically ill surgical patients: a prospective, stratified, randomized, double-blind, placebo-controlled clinical trial. Am J Respir Crit Care Med 166(8):1029–1037PubMedCrossRefGoogle Scholar
  137. 137.
    Bergmans DC, Bonten MJ, Gaillard CA et al (2001) Prevention of ventilator-associated pneumonia by oral decontamination: a prospective, randomized, double-blind, placebo-controlled study. Am J Respir Crit Care Med 164(3):382–388PubMedGoogle Scholar
  138. 138.
    Smet AM de, Kluytmans JA, Cooper BS et al (2009) Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med 360(1):20–31PubMedCrossRefGoogle Scholar
  139. 139.
    Jonge E de, Schultz M, Spanjaard L et al (2003) Effects of selective decontamination of digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomized controlled trial. Lancet 362:1011–1016PubMedCrossRefGoogle Scholar
  140. 140.
    La Cal MA de, Cerda E, Garcia-Hierro P et al (2005) Survival benefit in critically ill burned patients receiving selective decontamination of the digestive tract: a randomized, placebo-controlled, double-blind trial. Ann Surg 241(3):424–430CrossRefGoogle Scholar
  141. 141.
    Heininger A, Meyer E, Schwab F et al (2006) Effects of long-term routine use of selective digestive decontamination on antimicrobial resistance. Intensive Care Med 32(10):1569–1576PubMedCrossRefGoogle Scholar
  142. 142.
    Leone M, Albanese J, Antonini F et al (2003) Long-term (6-year) effect of selective digestive decontamination on antimicrobial resistance in intensive care, multiple-trauma patients. Crit Care Med 31(8):2090–2095PubMedCrossRefGoogle Scholar
  143. 143.
    Chlebicki MP, Safdar N (2007) Topical chlorhexidine for prevention of ventilator-associated pneumonia: a meta-analysis. Crit Care Med 35(2):595–602PubMedCrossRefGoogle Scholar
  144. 144.
    Segers P, Speekenbrink RG, Ubbink DT et al (2006) Prevention of nosocomial infection in cardiac surgery by decontamination of the nasopharynx and oropharynx with chlorhexidine gluconate: a randomized controlled trial. JAMA 296(20):2460–2466PubMedCrossRefGoogle Scholar
  145. 145.
    Kola A, Gastmeier P (2007) Efficacy of oral chlorhexidine in preventing lower respiratory tract infections. Meta-analysis of randomized controlled trials. J Hosp Infect 66(3):207–216PubMedCrossRefGoogle Scholar
  146. 146.
    Chan EY, Ruest A, Meade MO, Cook DJ (2007) Oral decontamination for prevention of pneumonia in mechanically ventilated adults: systematic review and meta-analysis. BMJ 334(7599):889PubMedCrossRefGoogle Scholar
  147. 147.
    Piarroux R, Grenouillet F, Balvay P et al (2004) Assessment of preemptive treatment to prevent severe candidiasis in critically ill surgical patients. Crit Care Med 32:2443–2449PubMedCrossRefGoogle Scholar
  148. 148.
    Ho K, Rochford S, John G (2005) The use of topical nonabsorbable gastrointestinal antifungal prophylaxis to prevent fungal infections in critically ill immunocompetent patients: a meta-analysis. Crit Care Med 33:2383–2392PubMedCrossRefGoogle Scholar
  149. 149.
    Veenstra D, Saint S, Saha S et al (1999) Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection. JAMA 281:261–267PubMedCrossRefGoogle Scholar
  150. 150.
    Geffers C, Zuschneid I, Eckmanns T et al (2003) The relationship between methodological trial quality and the effects of impregnated central venous catheters. Intensive Care Med 29:403–409PubMedGoogle Scholar
  151. 151.
    Walder B, Pittet D, Tramèr M (2002) Prevention of bloodstream infections with central venous catheters treated with anti-infective agents depends on catheter type and insertion time: evidence from a meta-analysis. Infect Control Hosp Epidemiol 23:748–756PubMedCrossRefGoogle Scholar
  152. 152.
    Johnson J, Kuskowski M, Wilt T (2006) Systematic review: antimicrobial urinary catheters to prevent catheter-associated urinary tract infection in hospitalized patients. Ann Intern Med 144:116–126PubMedGoogle Scholar
  153. 153.
    Falagas M, Fragoulis K, Bliziotis I, Chatzinikolaou I (2007) Rifampicin-impregnated central venous catheters: a meta-analysis of randomized controlled trials. J Antimicrob Chemother 59:359–369PubMedCrossRefGoogle Scholar
  154. 154.
    Fridkin SK, Pear SM, Williamson TH et al (1996) The role of understaffing in central venous catheter-associated bloodstream infection. Infect Control Hosp Epidemiol 17:150–158PubMedCrossRefGoogle Scholar
  155. 155.
    Archibald LK, Manning ML, Bell LM et al (1997) Patient density, nurse-to-patient ratio and nosocomial infection risk in a pediatric cardiac intensive care unit. Pediatr Infect Dis 16:1045–1048CrossRefGoogle Scholar
  156. 156.
    Dorsey G, Borneo H, Sun S et al (2000) A heterogeneous outbreak of Enterobacter cloacae and Serratia marcescens infections in a surgical intensive care unit. Infect Control Hosp Epidemiol 21:465–469PubMedCrossRefGoogle Scholar
  157. 157.
    Pessoa-Silva C, Toscano C, Moreira B et al (2002) Infection due to extended-spectrum beta-lactamase-producing Salmonella enterica subs. enterica serotype infantis in a neonatal unit. J Pediatr 141:381–387PubMedCrossRefGoogle Scholar
  158. 158.
    Robert J, Fridkin S, Blumberg H et al (2000) The influence of the composition of the nursing staff on primary bloodstream infection rates in a surgical intensive care unit. Infect Control Hosp Epidemiol 21:12–17PubMedCrossRefGoogle Scholar
  159. 159.
    Harbarth S, Sudre P, Dharan S et al (1999) Outbreak of Enterobacter cloacae related to understaffing, overcrowding, and poor hygiene practices. Infect Control Hosp Epidemiol 20:598–603PubMedCrossRefGoogle Scholar
  160. 160.
    Halwani M, Solaymani-Dodaran M, Grundmann H et al (2006) Cross-transmission of nosocomial pathogens in an adult intensive care unit: incidence and risk factors. J Hosp Infect 63:39–46PubMedCrossRefGoogle Scholar
  161. 161.
    Hugonnet S, Chevrolet JC, Pittet D (2007) The effect of workload on infection risk in critically ill patients. Crit Care Med 35(1):76–81PubMedCrossRefGoogle Scholar
  162. 162.
    William BM, Thawani N, Sae-Tia S, Corazza GR (2007) Hyposplenism: a comprehensive review. Part II: clinical manifestations, diagnosis, and management. Hematology 12(2):89–98PubMedCrossRefGoogle Scholar
  163. 163.
    Landgren O, Bjorkholm M, Konradsen HB et al (2004) A prospective study on antibody response to repeated vaccinations with pneumococcal capsular polysaccharide in splenectomized individuals with special reference to Hodgkin’s lymphoma. J Intern Med 255(6):664–673PubMedCrossRefGoogle Scholar
  164. 164.
    Cherif H, Landgren O, Konradsen HB et al (2006) Poor antibody response to pneumococcal polysaccharide vaccination suggests increased susceptibility to pneumococcal infection in splenectomized patients with hematological diseases. Vaccine 24(1):75–81PubMedCrossRefGoogle Scholar
  165. 165.
    Davies JM, Barnes R, Milligan D (2002) Update of guidelines for the prevention and treatment of infection in patients with an absent or dysfunctional spleen. Clin Med 2(5):440–443PubMedGoogle Scholar
  166. 166.
    Jackson LA, Neuzil KM, Yu O et al (2003) Effectiveness of pneumococcal polysaccharide vaccine in older adults. N Engl J Med 348(18):1747–1755PubMedCrossRefGoogle Scholar
  167. 167.
    Vila-Corcoles A, Ochoa-Gondar O, Hospital I et al (2006) Protective effects of the 23-valent pneumococcal polysaccharide vaccine in the elderly population: the EVAN-65 study. Clin Infect Dis 43(7):860–868PubMedCrossRefGoogle Scholar
  168. 168.
    Ortqvist A, Hedlund J, Burman LA et al (1998) Randomised trial of 23-valent pneumococcal capsular polysaccharide vaccine in prevention of pneumonia in middle-aged and elderly people. Swedish Pneumococcal Vaccination Study Group. Lancet 351(9100):399–403PubMedCrossRefGoogle Scholar
  169. 169.
    Wacha H, Hau T, Dittmer R, Ohmann C (1999) Risk factors associated with intraabdominal infections: a prospective multicenter study. Peritonitis Study Group. Langenbecks Arch Surg 384(1):24–32PubMedCrossRefGoogle Scholar
  170. 170.
    Barie PS, Williams MD, McCollam JS et al (2004) Benefit/risk profile of drotrecogin alfa (activated) in surgical patients with severe sepsis. Am J Surg 188(3):212–220PubMedCrossRefGoogle Scholar
  171. 171.
    Koperna T, Schulz F (2000) Relaparotomy in peritonitis: prognosis and treatment of patients with persisting intraabdominal infection. World J Surg 24(1):32–37PubMedCrossRefGoogle Scholar
  172. 172.
    Kaiser RE, Cerra FB (1981) Progressive necrotizing surgical infections – A unified approach. J Trauma 21(5):349–355PubMedCrossRefGoogle Scholar
  173. 173.
    Byrnes MC, Coopersmith CM (2007) Prevention of catheter-related bloodstream infection. Curr Opin Crit Care 13(4):411–415PubMedCrossRefGoogle Scholar
  174. 174.
    Zühlke H (2006) Autologe Verfahren zur Therapie von Gefäßinfektionen. Gefaßchirurgie 11(6):409–422CrossRefGoogle Scholar
  175. 175.
    Arens S, Hansis M (1998) Implantate in der Unfallchirurgie Osteosynthese mit Titan. Dtsch Arztebl Arztl Mitteil A 95(24):1516–1518Google Scholar
  176. 176.
    Sia IG, Berbari EF, Karchmer AW (2005) Prosthetic joint infections. Infect Dis Clin North Am 19(4):885–914PubMedCrossRefGoogle Scholar
  177. 177.
    Mehendiratta V, McCarty BC, Gomez L et al (2007) Computerized tomography (CT)-guided aspiration of abscesses: outcome of therapy at a tertiary care hospital. J Infect 54(2):122–128PubMedCrossRefGoogle Scholar
  178. 178.
    Schneider JI (2004) Rapid infectious killers. Emerg Med Clin North Am 22(4):1099–1115PubMedCrossRefGoogle Scholar
  179. 179.
    Ruler O van, Lamme B, Gouma DJ et al (2007) Variables associated with positive findings at relaparotomy in patients with secondary peritonitis. Crit Care Med 35(2):468–476PubMedCrossRefGoogle Scholar
  180. 180.
    Pieracci FM, Barie PS (2007) Intra-abdominal infections. Curr Opin Crit Care 13(4):440–449PubMedCrossRefGoogle Scholar
  181. 181.
    Klompas M, Yokoe DS (2009) Automated surveillance of health care-associated infections. Clin Infect Dis 48(9):1268–1275PubMedCrossRefGoogle Scholar
  182. 182.
    National Nosocomial Infections Surveillance (NNIS) System (1999) Intensive care antimicrobial resistance epidemiology (ICARE) surveillance report, data summary from January 1996 through December 1997. Am J Infect Control 27(3):279–284CrossRefGoogle Scholar
  183. 183.
    Engel C, Brunkhorst FM, Bone HG et al (2007) Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med 33(4):606–618PubMedCrossRefGoogle Scholar
  184. 184.
    Freid MA, Vosti KL (1968) The importance of underlying disease in patients with gram-negative bacteremia. Arch Intern Med 121(5):418–423PubMedCrossRefGoogle Scholar
  185. 185.
    McCabe WR, Jackson GG (1962) Gram negative bacteremia. Arch Intern Med 110:92–100Google Scholar
  186. 186.
    Bryant RE, Hood AF, Hood CE, Koenig MG (1971) Factors affecting mortality of gram-negative rod bacteremia. Arch Intern Med 127(1):120–128PubMedCrossRefGoogle Scholar
  187. 187.
    Young LS, Martin WJ, Meyer RD et al (1977) Gram-negative rod bacteremia: microbiologic, immunologic, and therapeutic considerations. Ann Intern Med 86(4):456–471PubMedGoogle Scholar
  188. 188.
    Kreger BE, Craven DE, McCabe WR (1980) Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med 68(3):344–355PubMedCrossRefGoogle Scholar
  189. 189.
    Leibovici L, Paul M, Poznanski O et al (1997) Monotherapy versus beta-lactam-aminoglycoside combination treatment for gram-negative bacteremia: a prospective, observational study. Antimicrob Agents Chemother 41(5):1127–1133PubMedGoogle Scholar
  190. 190.
    Chow JW, Fine MJ, Shlaes DM et al (1991) Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med 115(8):585–590PubMedGoogle Scholar
  191. 191.
    Vidal F, Mensa J, Almela M et al (1996) Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment. Analysis of 189 episodes. Arch Intern Med 156(18):2121–2126PubMedCrossRefGoogle Scholar
  192. 192.
    Schiappa DA, Hayden MK, Matushek MG et al (1996) Ceftazidime-resistant Klebsiella pneumoniae and Escherichia coli bloodstream infection: a case-control and molecular epidemiologic investigation. J Infect Dis 174(3):529–536PubMedGoogle Scholar
  193. 193.
    Caballero-Granado FJ, Cisneros JM, Luque R et al (1998) Comparative study of bacteremias caused by Enterococcus spp. with and without high-level resistance to gentamicin. The Grupo Andaluz para el Estudio de las Enfermedades Infecciosas. J Clin Microbiol 36(2):520–525PubMedGoogle Scholar
  194. 194.
    Ispahani P, Pearson NJ, Greenwood D (1987) An analysis of community and hospital-acquired bacteraemia in a large teaching hospital in the United Kingdom. Q J Med 63(241):427–440PubMedGoogle Scholar
  195. 195.
    Leibovici L, Drucker M, Konigsberger H et al (1997) Septic shock in bacteremic patients: risk factors, features and prognosis. Scand J Infect Dis 29(1):71–75PubMedCrossRefGoogle Scholar
  196. 196.
    Leibovici L, Shraga I, Drucker M et al (1998) The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med 244(5):379–386PubMedCrossRefGoogle Scholar
  197. 197.
    Kollef MH, Sherman G, Ward S, Fraser VJ (1999) Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 115(2):462–474PubMedCrossRefGoogle Scholar
  198. 198.
    Ibrahim EH, Sherman G, Ward S et al (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 118(1):146–155PubMedCrossRefGoogle Scholar
  199. 199.
    Harbarth S, Ferriere K, Hugonnet S et al (2002) Epidemiology and prognostic determinants of bloodstream infections in surgical intensive care. Arch Surg 137(12):1353–1359; discussion 1359PubMedCrossRefGoogle Scholar
  200. 200.
    Hanon FX, Monnet DL, Sorensen TL et al (2002) Survival of patients with bacteraemia in relation to initial empirical antimicrobial treatment. Scand J Infect Dis 34(7):520–528PubMedCrossRefGoogle Scholar
  201. 201.
    Harbarth S, Garbino J, Pugin J et al (2003) Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 115(7):529–535PubMedCrossRefGoogle Scholar
  202. 202.
    Zaragoza R, Artero A, Camarena JJ et al (2003) The influence of inadequate empirical antimicrobial treatment on patients with bloodstream infections in an intensive care unit. Clin Microbiol Infect 9(5):412–418PubMedCrossRefGoogle Scholar
  203. 203.
    Leone M, Bourgoin A, Cambon S et al (2003) Empirical antimicrobial therapy of septic shock patients: adequacy and impact on the outcome. Crit Care Med 31(2):462–467PubMedCrossRefGoogle Scholar
  204. 204.
    Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A et al (2003) Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med 31(12):2742–2751PubMedCrossRefGoogle Scholar
  205. 205.
    Paul M, Benuri-Silbiger I, Soares-Weiser K, Leibovici L (2004) Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ 328(7441):668PubMedCrossRefGoogle Scholar
  206. 206.
    Heyland DK, Dodek P, Muscedere J et al (2008) Randomized trial of combination versus monotherapy for the empiric treatment of suspected ventilator-associated pneumonia. Crit Care Med 36(3):737–744PubMedCrossRefGoogle Scholar
  207. 207.
    Fowler VG Jr, Boucher HW, Corey GR et al (2006) Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 355(7):653–665PubMedCrossRefGoogle Scholar
  208. 208.
    Babinchak T, Ellis-Grosse E, Dartois N et al (2005) The efficacy and safety of tigecycline for the treatment of complicated intra-abdominal infections: analysis of pooled clinical trial data. Clin Infect Dis 41 [Suppl 5]:S354–S367Google Scholar
  209. 209.
    Byl B, Jacobs F, Wallemacq P et al (2003) Vancomycin penetration of uninfected pleural fluid exudate after continuous or intermittent infusion. Antimicrob Agents Chemother 47(6):2015–2017PubMedCrossRefGoogle Scholar
  210. 210.
    Cruciani M, Gatti G, Lazzarini L et al (1996) Penetration of vancomycin into human lung tissue. J Antimicrob Chemother 38(5):865–869PubMedCrossRefGoogle Scholar
  211. 211.
    Kollef MH, Rello J, Cammarata SK et al (2004) Clinical cure and survival in gram-positive ventilator-associated pneumonia: retrospective analysis of two double-blind studies comparing linezolid with vancomycin. Intensive Care Med 30(3):388–394PubMedCrossRefGoogle Scholar
  212. 212.
    Wunderink RG, Rello J, Cammarata SK et al (2003) Linezolid vs vancomycin: analysis of two double-blind studies of patients with methicillin-resistant Staphylococcus aureus nosocomial pneumonia. Chest 124(5):1789–1797PubMedCrossRefGoogle Scholar
  213. 213.
    Sharpe JN, Shively EH, Polk HC Jr (2005) Clinical and economic outcomes of oral linezolid versus intravenous vancomycin in the treatment of MRSA-complicated, lower-extremity skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. Am J Surg 189(4):425–428PubMedCrossRefGoogle Scholar
  214. 214.
    Weigelt J, Itani K, Stevens D et al (2005) Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother 49(6):2260–2266PubMedCrossRefGoogle Scholar
  215. 215.
    Weigelt J, Kaafarani HM, Itani KM, Swanson RN (2004) Linezolid eradicates MRSA better than vancomycin from surgical-site infections. Am J Surg 188(6):760–766PubMedCrossRefGoogle Scholar
  216. 216.
    Gang RK, Sanyal SC, Mokaddas E, Lari AR (1999) Rifampicin as an adjunct to vancomycin therapy in MRSA septicaemia in burns. Burns 25(7):640–644PubMedCrossRefGoogle Scholar
  217. 217.
    Grif K, Dierich MP, Pfaller K et al (2001) In vitro activity of fosfomycin in combination with various antistaphylococcal substances. J Antimicrob Chemother 48(2):209–217PubMedCrossRefGoogle Scholar
  218. 218.
    Yzerman EP, Boelens HA, Vogel M, Verbrugh HA (1998) Efficacy and safety of teicoplanin plus rifampicin in the treatment of bacteraemic infections caused by Staphylococcus aureus. J Antimicrob Chemother 42(2):233–239PubMedCrossRefGoogle Scholar
  219. 219.
    Howden BP, Ward PB, Charles PG et al (2004) Treatment outcomes for serious infections caused by methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility. Clin Infect Dis 38(4):521–528PubMedCrossRefGoogle Scholar
  220. 220.
    Baddour LM, Yu VL, Klugman KP et al (2004) Combination antibiotic therapy lowers mortality among severely ill patients with pneumococcal bacteremia. Am J Respir Crit Care Med 170(4):440–444PubMedCrossRefGoogle Scholar
  221. 221.
    Nguyen MH, Peacock JE Jr, Tanner DC et al (1995) Therapeutic approaches in patients with candidemia. Evaluation in a multicenter, prospective, observational study. Arch Intern Med 155(22):2429–2435PubMedCrossRefGoogle Scholar
  222. 222.
    Jacobs S, Price Evans DA, Tariq M, Al Omar NF (2003) Fluconazole improves survival in septic shock: a randomized double-blind prospective study. Crit Care Med 31(7):1938–1946PubMedCrossRefGoogle Scholar
  223. 223.
    Bochud PY, Glauser MP, Calandra T (2001) Antibiotics in sepsis. Intensive Care Med 27 [Suppl 1]:S33–S48Google Scholar
  224. 224.
    Sobel JD, Rex JH (2001) Invasive candidiasis: turning risk into a practical prevention policy? Clin Infect Dis 33(2):187–190PubMedCrossRefGoogle Scholar
  225. 225.
    Link H, Bohme A, Cornely OA et al (2003) Antimicrobial therapy of unexplained fever in neutropenic patients – Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO), Study Group Interventional Therapy of Unexplained Fever, Arbeitsgemeinschaft Supportivmaßnahmen in der Onkologie (ASO) of the Deutsche Krebsgesellschaft (DKG-German Cancer Society). Ann Hematol 82 [Suppl 2]:S105–S117Google Scholar
  226. 226.
    Maschmeyer G, Böhme A, Buchheidt D et al. (2004) Diagnostik und Therapie von Infektionen bei Patienten in der Hämatologie und Onkologie. Leitlinien der Sektion Infektionen in der Hämatologie/Onkologie der Paul-Ehrlich-Gesellschaft e.V. Chemother J 13(3):134–141Google Scholar
  227. 227.
    Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345(19):1368–1377PubMedCrossRefGoogle Scholar
  228. 228.
    Swenson JD, Bull D, Stringham J (2001) Subjective assessment of left ventricular preload using transesophageal echocardiography: corresponding pulmonary artery occlusion pressures. J Cardiothorac Vasc Anesth 15(5):580–583PubMedCrossRefGoogle Scholar
  229. 229.
    Buhre W, Buhre K, Kazmaier S et al (2001) Assessment of cardiac preload by indicator dilution and transoesophageal echocardiography. Eur J Anaesthesiol 18(10):662–667PubMedGoogle Scholar
  230. 230.
    Kumar A, Anel R, Bunnell E et al (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32(3):691–699PubMedCrossRefGoogle Scholar
  231. 231.
    Godje O, Peyerl M, Seebauer T et al (1998) Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes as preload indicators in cardiac surgery patients. Eur J Cardiothorac Surg 13(5):533–539; discussion 539–540PubMedCrossRefGoogle Scholar
  232. 232.
    Nguyen HB, Corbett SW, Steele R et al (2007) Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality. Crit Care Med 35(4):1105–1112PubMedCrossRefGoogle Scholar
  233. 233.
    Ferrer R, Artigas A, Levy MM et al (2008) Improvement in process of care and outcome after a multicenter severe sepsis educational program in Spain. JAMA 299(19):2294–2303PubMedCrossRefGoogle Scholar
  234. 234.
    Kortgen A, Niederprum P, Bauer M (2006) Implementation of an evidence-based „standard operating procedure“ and outcome in septic shock. Crit Care Med 34(4):943–949PubMedCrossRefGoogle Scholar
  235. 235.
    Brunkhorst FM, Engel C, Bloos F et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358(2):125–139PubMedCrossRefGoogle Scholar
  236. 236.
    Schortgen F, Lacherade JC, Bruneel F et al (2001) Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 357(9260):911–916PubMedCrossRefGoogle Scholar
  237. 237.
    Zarychanski R, Turgeon A, Fergusson D et al (2008) Renal outcomes following hydroxyethyl starch resuscitation: a meta-analysis of randomized trials. Clin Invest Med 31 [4 Suppl 4]:S26Google Scholar
  238. 238.
    Dart AB, Mutter TC, Ruth CA, Taback SP (2010) Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev (1):CD007594Google Scholar
  239. 239.
    Finfer S, Bellomo R, Boyce N et al (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350(22):2247–2256PubMedCrossRefGoogle Scholar
  240. 240.
    Meier-Hellmann A (2000) Hämodynamische Stabilisierung in der Sepsis. Anasthesiol Intensivmed 41:601–613Google Scholar
  241. 241.
    Gattinoni L, Brazzi L, Pelosi P et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 333(16):1025–1032PubMedCrossRefGoogle Scholar
  242. 242.
    Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30(8):1686–1692PubMedCrossRefGoogle Scholar
  243. 243.
    Hayes MA, Yau EH, Timmins AC et al (1993) Response of critically ill patients to treatment aimed at achieving supranormal oxygen delivery and consumption. Relationship to outcome. Chest 103:886–895PubMedCrossRefGoogle Scholar
  244. 244.
    Meier-Hellmann A, Bredle DL, Specht M et al (1999) Dopexamine increases splanchnic blood flow but decreases gastric mucosal pH in severe septic patients treated with dobutamine. Crit Care Med 27(10):2166–2171PubMedCrossRefGoogle Scholar
  245. 245.
    Bennett ED (1998) Dopexamine: much more than a vasoactive agent. Crit Care Med 26(10):1621–1622PubMedCrossRefGoogle Scholar
  246. 246.
    Byers RJ, Eddleston JM, Pearson RC et al (1999) Dopexamine reduces the incidence of acute inflammation in the gut mucosa after abdominal surgery in high-risk patients. Crit Care Med 27(9):1787–1793PubMedCrossRefGoogle Scholar
  247. 247.
    Kiefer P, Tugtekin I, Wiedeck H et al (2000) Effect of a dopexamine-induced increase in cardiac index on splanchnic hemodynamics in septic shock. Am J Respir Crit Care Med 161(3 Pt 1):775–779PubMedGoogle Scholar
  248. 248.
    Schmidt W, Hacker A, Gebhard MM et al (1998) Dopexamine attenuates endotoxin-induced microcirculatory changes in rat mesentery: role of beta2 adrenoceptors. Crit Care Med 26(10):1639–1645PubMedCrossRefGoogle Scholar
  249. 249.
    Mullner M, Urbanek B, Havel C et al (2004) Vasopressors for shock. Cochrane Database Syst Rev (3):CD003709Google Scholar
  250. 250.
    Martin C, Viviand X, Leone M, Thirion X (2000) Effect of norepinephrine on the outcome of septic shock. Crit Care Med 28(8):2758–2765PubMedCrossRefGoogle Scholar
  251. 251.
    Annane D, Vignon P, Renault A et al (2007) Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet 370(9588):676–684PubMedCrossRefGoogle Scholar
  252. 252.
    Prielipp RC, MacGregor DA, Royster RL et al (1998) Dobutamine antagonizes epinephrine’s biochemical and cardiotonic effects: results of an in vitro model using human lymphocytes and a clinical study in patients recovering from cardiac surgery. Anesthesiology 89(1):49–57PubMedCrossRefGoogle Scholar
  253. 253.
    Dunser MW, Mayr AJ, Ulmer H et al (2003) Arginine vasopressin in advanced vasodilatory shock: a prospective, randomized, controlled study. Circulation 107(18):2313–2319PubMedCrossRefGoogle Scholar
  254. 254.
    Tsuneyoshi I, Yamada H, Kakihana Y et al (2001) Hemodynamic and metabolic effects of low-dose vasopressin infusions in vasodilatory septic shock. Crit Care Med 29(3):487–493PubMedCrossRefGoogle Scholar
  255. 255.
    Malay MB, Ashton RC Jr, Landry DW, Townsend RN (1999) Low-dose vasopressin in the treatment of vasodilatory septic shock. J Trauma 47(4):699–703; discussion 703–705PubMedCrossRefGoogle Scholar
  256. 256.
    Patel BM, Chittock DR, Russell JA, Walley KR (2002) Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology 96(3):576–582PubMedCrossRefGoogle Scholar
  257. 257.
    Dunser MW, Mayr AJ, Tur A et al (2003) Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med 31(5):1394–1398PubMedCrossRefGoogle Scholar
  258. 258.
    Russell JA, Walley KR, Singer J et al (2008) Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med 358(9):877–887PubMedCrossRefGoogle Scholar
  259. 259.
    Bellomo R, Chapman M, Finfer S et al (2000) Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet 356(9248):2139–2143PubMedCrossRefGoogle Scholar
  260. 260.
    Marik PE, Iglesias J (1999) Low-dose dopamine does not prevent acute renal failure in patients with septic shock and oliguria. NORASEPT II Study Investigators. Am J Med 107(4):387–390PubMedCrossRefGoogle Scholar
  261. 261.
    Chertow GM, Sayegh MH, Allgren RL, Lazarus JM (1996) Is the administration of dopamine associated with adverse or favorable outcomes in acute renal failure? Auriculin Anaritide Acute Renal Failure Study Group. Am J Med 101(1):49–53PubMedCrossRefGoogle Scholar
  262. 262.
    Kellum JA, J MD (2001) Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med 29(8):1526–1531PubMedCrossRefGoogle Scholar
  263. 263.
    Marik PE (2002) Low-dose dopamine: a systematic review. Intensive Care Med 28(7):877–883PubMedCrossRefGoogle Scholar
  264. 264.
    Debaveye YA, Berghe van den GH (2004) Is there still a place for dopamine in the modern intensive care unit? Anesth Analg 98(2):461–468PubMedCrossRefGoogle Scholar
  265. 265.
    Oppert M, Engel C, Brunkhorst FM et al (2008) Acute renal failure in patients with severe sepsis and septic shock – a significant independent risk factor for mortality: results from the German prevalence study. Nephrol Dial Transplant 23(3):904–909PubMedCrossRefGoogle Scholar
  266. 266.
    Mehta RL, Kellum JA, Shah SV et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11(2):R31PubMedCrossRefGoogle Scholar
  267. 267.
    Vinsonneau C, Camus C, Combes A et al (2006) Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial. Lancet 368(9533):379–385PubMedCrossRefGoogle Scholar
  268. 268.
    Kellum JA, Angus DC, Johnson JP et al (2002) Continuous versus intermittent renal replacement therapy: a meta-analysis. Intensive Care Med 28(1):29–37PubMedCrossRefGoogle Scholar
  269. 269.
    Tonelli M, Manns B, Feller-Kopman D (2002) Acute renal failure in the intensive care unit: a systematic review of the impact of dialytic modality on mortality and renal recovery. Am J Kidney Dis 40(5):875–885PubMedCrossRefGoogle Scholar
  270. 270.
    Augustine JJ, Sandy D, Seifert TH, Paganini EP (2004) A randomized controlled trial comparing intermittent with continuous dialysis in patients with ARF. Am J Kidney Dis 44(6):1000–1007PubMedCrossRefGoogle Scholar
  271. 271.
    Gasparovic V, Filipovic-Grcic I, Merkler M, Pisl Z (2003) Continuous renal replacement therapy (CRRT) or intermittent hemodialysis (IHD) – what is the procedure of choice in critically ill patients? Ren Fail 25(5):855–862PubMedCrossRefGoogle Scholar
  272. 272.
    Mehta RL, McDonald B, Gabbai FB et al (2001) A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney Int 60(3):1154–1163PubMedCrossRefGoogle Scholar
  273. 273.
    Uehlinger DE, Jakob SM, Ferrari P et al (2005) Comparison of continuous and intermittent renal replacement therapy for acute renal failure. Nephrol Dial Transplant 20(8):1630–1637PubMedCrossRefGoogle Scholar
  274. 274.
    John S, Griesbach D, Baumgartel M et al (2001) Effects of continuous haemofiltration vs intermittent haemodialysis on systemic haemodynamics and splanchnic regional perfusion in septic shock patients: a prospective, randomized clinical trial. Nephrol Dial Transplant 16(2):320–327PubMedCrossRefGoogle Scholar
  275. 275.
    Kielstein JT, Kretschmer U, Ernst T et al (2004) Efficacy and cardiovascular tolerability of extended dialysis in critically ill patients: a randomized controlled study. Am J Kidney Dis 43(2):342–349PubMedCrossRefGoogle Scholar
  276. 276.
    Schortgen F, Soubrier N, Delclaux C et al (2000) Hemodynamic tolerance of intermittent hemodialysis in critically ill patients: usefulness of practice guidelines. Am J Respir Crit Care Med 162(1):197–202PubMedGoogle Scholar
  277. 277.
    Misset B, Timsit JF, Chevret S et al (1996) A randomized cross-over comparison of the hemodynamic response to intermittent hemodialysis and continuous hemofiltration in ICU patients with acute renal failure. Intensive Care Med 22(8):742–746PubMedCrossRefGoogle Scholar
  278. 278.
    Faulhaber-Walter R, Hafer C, Jahr N et al (2009) The Hannover Dialysis Outcome study: comparison of standard versus intensified extended dialysis for treatment of patients with acute kidney injury in the intensive care unit. Nephrol Dial Transplant 24(7):2179–2186PubMedCrossRefGoogle Scholar
  279. 279.
    Bellomo R, Cass A, Cole L et al (2009) Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 361(17):1627–1638PubMedCrossRefGoogle Scholar
  280. 280.
    Palevsky PM, Zhang JH, O’Connor TZ et al (2008) Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359(1):7–20PubMedCrossRefGoogle Scholar
  281. 281.
    Bouman CS, Oudemans-Van Straaten HM, Tijssen JG et al (2002) Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: a prospective, randomized trial. Crit Care Med 30(10):2205–2211PubMedCrossRefGoogle Scholar
  282. 282.
    Ronco C, Bellomo R, Homel P et al (2000) Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 356(9223):26–30PubMedCrossRefGoogle Scholar
  283. 283.
    Saudan P, Niederberger M, De Seigneux S et al (2006) Adding a dialysis dose to continuous hemofiltration increases survival in patients with acute renal failure. Kidney Int 70(7):1312–1317PubMedCrossRefGoogle Scholar
  284. 284.
    Schiffl H, Lang SM, Fischer R (2002) Daily hemodialysis and the outcome of acute renal failure. N Engl J Med 346(5):305–310PubMedCrossRefGoogle Scholar
  285. 285.
    Tolwani AJ, Campbell RC, Stofan BS et al (2008) Standard versus high-dose CVVHDF for ICU-related acute renal failure. J Am Soc Nephrol 19(6):1233–1238PubMedCrossRefGoogle Scholar
  286. 286.
    De Vriese AS, Colardyn FA, Philippe JJ et al (1999) Cytokine removal during continuous hemofiltration in septic patients. J Am Soc Nephrol 10(4):846–853Google Scholar
  287. 287.
    Deuren M van, Meer JW van der (2000) Hemofiltration in septic patients is not able to alter the plasma concentration of cytokines therapeutically. Intensive Care Med 26(9):1176–1178PubMedCrossRefGoogle Scholar
  288. 288.
    Payen D, Mateo J, Cavaillon JM et al (2009) Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: a randomized controlled trial. Crit Care Med 37(3):803–810PubMedCrossRefGoogle Scholar
  289. 289.
    Hopkins RO, Weaver LK, Pope D et al (1999) Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome. Am J Respir Crit Care Med 160(1):50–56PubMedGoogle Scholar
  290. 290.
    Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–1308CrossRefGoogle Scholar
  291. 291.
    Amato MB, Barbas CS, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338(6):347–354PubMedCrossRefGoogle Scholar
  292. 292.
    Villar J, Kacmarek RM, Perez-Mendez L, Aguirre-Jaime A (2006) A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 34(5):1311–1318PubMedCrossRefGoogle Scholar
  293. 293.
    Terragni PP, Rosboch G, Tealdi A et al (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175(2):160–166PubMedCrossRefGoogle Scholar
  294. 294.
    Hager DN, Krishnan JA, Hayden DL, Brower RG (2005) Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 172(10):1241–1245PubMedCrossRefGoogle Scholar
  295. 295.
    Bidani A, Tzouanakis AE, Cardenas VJ Jr, Zwischenberger JB (1994) Permissive hypercapnia in acute respiratory failure. JAMA 272(12):957–962PubMedCrossRefGoogle Scholar
  296. 296.
    Hickling KG, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22(10):1568–1578PubMedCrossRefGoogle Scholar
  297. 297.
    Martin GS, Bernard GR (2001) Airway and lung in sepsis. Intensive Care Med 27 [Suppl 1]:S63–S79Google Scholar
  298. 298.
    Gattinoni L, Tognoni G, Pesenti A et al (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345(8):568–573PubMedCrossRefGoogle Scholar
  299. 299.
    Guerin C, Gaillard S, Lemasson S et al (2004) Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 292(19):2379–2387PubMedCrossRefGoogle Scholar
  300. 300.
    Lundin S, Mang H, Smithies M et al (1999) Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. The European Study Group of Inhaled Nitric Oxide. Intensive Care Med 25(9):911–919PubMedCrossRefGoogle Scholar
  301. 301.
    Taylor RW, Zimmerman JL, Dellinger RP et al (2004) Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA 291(13):1603–1609PubMedCrossRefGoogle Scholar
  302. 302.
    Sokol J, Jacobs SE, Bohn D (2003) Inhaled nitric oxide for acute hypoxic respiratory failure in children and adults: a meta-analysis. Anesth Analg 97(4):989–998PubMedCrossRefGoogle Scholar
  303. 303.
    Esteban A, Alia I, Gordo F et al (1997) Extubation outcome after spontaneous breathing trials with T-tube or pressure support ventilation. The Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med 156(2 Pt 1):459–465PubMedGoogle Scholar
  304. 304.
    Esteban A, Alia I, Tobin MJ et al (1999) Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med 159(2):512–518PubMedGoogle Scholar
  305. 305.
    Ely EW, Baker AM, Dunagan DP et al (1996) Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med 335(25):1864–1869PubMedCrossRefGoogle Scholar
  306. 306.
    Ely EW, Bennett PA, Bowton DL et al (1999) Large scale implementation of a respiratory therapist-driven protocol for ventilator weaning. Am J Respir Crit Care Med 159(2):439–446PubMedGoogle Scholar
  307. 307.
    Bone RC, Fisher CJ Jr, Clemmer TP et al (1987) A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317(11):653–658PubMedCrossRefGoogle Scholar
  308. 308.
    The Veterans Administration Systemic Sepsis Cooperative Study Group (1987) Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis. N Engl J Med 317(11):659–665CrossRefGoogle Scholar
  309. 309.
    Sprung CL, Annane D, Keh D et al (2008) Hydrocortisone therapy for patients with septic shock. N Engl J Med 358(2):111–124PubMedCrossRefGoogle Scholar
  310. 310.
    Marik PE, Zaloga GP (2003) Adrenal insufficiency during septic shock. Crit Care Med 31(1):141–145PubMedCrossRefGoogle Scholar
  311. 311.
    Zaloga GP, Marik P (2001) Hypothalamic-pituitary-adrenal insufficiency. Crit Care Clin 17(1):25–41PubMedCrossRefGoogle Scholar
  312. 312.
    Dunn JF, Nisula BC, Rodbard D (1981) Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab 53(1):58–68PubMedCrossRefGoogle Scholar
  313. 313.
    Beishuizen A, Thijs LG, Vermes I (2001) Patterns of corticosteroid-binding globulin and the free cortisol index during septic shock and multitrauma. Intensive Care Med 27(10):1584–1591PubMedCrossRefGoogle Scholar
  314. 314.
    Keh D, Boehnke T, Weber-Cartens S et al (2003) Immunologic and hemodynamic effects of „low-dose“ hydrocortisone in septic shock: a double-blind, randomized, placebo-controlled, crossover study. Am J Respir Crit Care Med 167(4):512–520PubMedCrossRefGoogle Scholar
  315. 315.
    Ali NA, O’Brien JM Jr, Dungan K et al (2008) Glucose variability and mortality in patients with sepsis. Crit Care Med 36(8):2316–2321PubMedCrossRefGoogle Scholar
  316. 316.
    Bernard GR, Vincent JL, Laterre PF et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344(10):699–709PubMedCrossRefGoogle Scholar
  317. 317.
    Abraham E, Laterre PF, Garg R et al (2005) Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med 353(13):1332–1341PubMedCrossRefGoogle Scholar
  318. 318.
    Vincent JL, Nadel S, Kutsogiannis DJ et al (2005) Drotrecogin alfa (activated) in patients with severe sepsis presenting with purpura fulminans, meningitis, or meningococcal disease: a retrospective analysis of patients enrolled in recent clinical studies. Crit Care 9(4):R331–R343PubMedCrossRefGoogle Scholar
  319. 319.
    Oxman AD, Guyatt GH (1992) A consumer’s guide to subgroup analyses. Ann Intern Med 116(1):78–84PubMedGoogle Scholar
  320. 320.
    Levi M, Levy M, Williams MD et al (2007) Prophylactic heparin in patients with severe sepsis treated with drotrecogin alfa (activated). Am J Respir Crit Care Med 176(5):483–490PubMedCrossRefGoogle Scholar
  321. 321.
    Warren BL, Eid A, Singer P et al (2001) Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 286(15):1869–1878PubMedCrossRefGoogle Scholar
  322. 322.
    Kreymann KG, Heer G de, Nierhaus A, Kluge S (2007) Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med 35(12):2677–2685PubMedCrossRefGoogle Scholar
  323. 323.
    Laupland KB, Kirkpatrick AW, Delaney A (2007) Polyclonal intravenous immunoglobulin for the treatment of severe sepsis and septic shock in critically ill adults: a systematic review and meta-analysis. Crit Care Med 35(12):2686–2692PubMedCrossRefGoogle Scholar
  324. 324.
    Werdan K, Pilz G, Bujdoso O et al (2007) Score-based immunoglobulin G therapy of patients with sepsis: the SBITS study. Crit Care Med 35(12):2693–2701PubMedCrossRefGoogle Scholar
  325. 325.
    Heyland DK (2007) Selenium supplementation in critically ill patients: can too much of a good thing be a bad thing? Crit Care 11(4):153PubMedCrossRefGoogle Scholar
  326. 326.
    Forceville X, Laviolle B, Annane D et al (2007) Effects of high doses of selenium, as sodium selenite, in septic shock: a placebo-controlled, randomized, double-blind, phase II study. Crit Care 11(4):R73PubMedCrossRefGoogle Scholar
  327. 327.
    Bernard GR, Wheeler AP, Russell JA et al (1997) The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group. N Engl J Med 336(13):912–918PubMedCrossRefGoogle Scholar
  328. 328.
    Takala J, Ruokonen E, Webster NR et al (1999) Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 341(11):785–792PubMedCrossRefGoogle Scholar
  329. 329.
    Holcroft JW, Vassar MJ, Weber CJ (1986) Prostaglandin E1 and survival in patients with the adult respiratory distress syndrome. A prospective trial. Ann Surg 203(4):371–378PubMedCrossRefGoogle Scholar
  330. 330.
    Bone RC, Slotman G, Maunder R et al (1989) Randomized double-blind, multicenter study of prostaglandin E1 in patients with the adult respiratory distress syndrome. Prostaglandin E1 Study Group. Chest 96(1):114–119PubMedCrossRefGoogle Scholar
  331. 331.
    Silverman HJ, Slotman G, Bone RC et al (1990) Effects of prostaglandin E1 on oxygen delivery and consumption in patients with the adult respiratory distress syndrome. Results from the prostaglandin E1 multicenter trial. The Prostaglandin E1 Study Group. Chest 98(2):405–410PubMedCrossRefGoogle Scholar
  332. 332.
    Abraham E, Baughman R, Fletcher E et al (1999) Liposomal prostaglandin E1 (TLC C-53) in acute respiratory distress syndrome: a controlled, randomized, double-blind, multicenter clinical trial. TLC C-53 ARDS Study Group. Crit Care Med 27(8):1478–1485PubMedCrossRefGoogle Scholar
  333. 333.
    Yang S, Zhou M, Koo DJ et al (1999) Pentoxifylline prevents the transition from the hyperdynamic to hypodynamic response during sepsis. Am J Physiol 277(3 Pt 2):H1036–H1044PubMedGoogle Scholar
  334. 334.
    Staubach KH, Schroder J, Stuber F et al (1998) Effect of pentoxifylline in severe sepsis: results of a randomized, double-blind, placebo-controlled study. Arch Surg 133(1):94–100PubMedCrossRefGoogle Scholar
  335. 335.
    Lauterbach R, Pawlik D, Kowalczyk D et al (1999) Effect of the immunomodulating agent, pentoxifylline, in the treatment of sepsis in prematurely delivered infants: a placebo-controlled, double-blind trial. Crit Care Med 27(4):807–814PubMedCrossRefGoogle Scholar
  336. 336.
    Molnar Z, Shearer E, Lowe D (1999) N-Acetylcysteine treatment to prevent the progression of multisystem organ failure: a prospective, randomized, placebo-controlled study. Crit Care Med 27(6):1100–1104PubMedCrossRefGoogle Scholar
  337. 337.
    Zhang P, Bagby GJ, Stoltz DA et al (1998) Enhancement of peritoneal leukocyte function by granulocyte colony-stimulating factor in rats with abdominal sepsis. Crit Care Med 26(2):315–321PubMedCrossRefGoogle Scholar
  338. 338.
    Lundblad R, Nesland JM, Giercksky KE (1996) Granulocyte colony-stimulating factor improves survival rate and reduces concentrations of bacteria, endotoxin, tumor necrosis factor, and endothelin-1 in fulminant intra-abdominal sepsis in rats. Crit Care Med 24(5):820–826PubMedCrossRefGoogle Scholar
  339. 339.
    Karzai W, Specht BU von, Parent C et al (1999) G-CSF during Escherichia coli versus Staphylococcus aureus pneumonia in rats has fundamentally different and opposite effects. Am J Respir Crit Care Med 159(5 Pt 1):1377–1382PubMedGoogle Scholar
  340. 340.
    Heard SO, Fink MP, Gamelli RL et al (1998) Effect of prophylactic administration of recombinant human granulocyte colony-stimulating factor (filgrastim) on the frequency of nosocomial infections in patients with acute traumatic brain injury or cerebral hemorrhage. The Filgrastim Study Group. Crit Care Med 26(4):748–754PubMedCrossRefGoogle Scholar
  341. 341.
    Root RK, Lodato RF, Patrick W et al (2003) Multicenter, double-blind, placebo-controlled study of the use of filgrastim in patients hospitalized with pneumonia and severe sepsis. Crit Care Med 31(2):367–373PubMedCrossRefGoogle Scholar
  342. 342.
    Pérez J, Dellinger RP (2001) Other supportive therapies in sepsis. Intensive Care Med 27 [Suppl 1]:S116–S127Google Scholar
  343. 343.
    Cade JF (1982) High risk of the critically ill for venous thromboembolism. Crit Care Med 10(7):448–450PubMedCrossRefGoogle Scholar
  344. 344.
    Belch JJ, Lowe GD, Ward AG et al (1981) Prevention of deep vein thrombosis in medical patients by low-dose heparin. Scott Med J 26(2):115–117PubMedGoogle Scholar
  345. 345.
    Samama MM, Cohen AT, Darmon JY et al (1999) A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients. Prophylaxis in Medical Patients with Enoxaparin Study Group. N Engl J Med 341(11):793–800PubMedCrossRefGoogle Scholar
  346. 346.
    Cestac P, Bagheri H, Lapeyre-Mestre M et al (2003) Utilisation and safety of low molecular weight heparins: prospective observational study in medical inpatients. Drug Saf 26(3):197–207PubMedCrossRefGoogle Scholar
  347. 347.
    Kreymann KG, Berger MM, Deutz NE et al (2006) ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr 25(2):210–223PubMedCrossRefGoogle Scholar
  348. 348.
    Sandstrom R, Drott C, Hyltander A et al (1993) The effect of postoperative intravenous feeding (TPN) on outcome following major surgery evaluated in a randomized study. Ann Surg 217(2):185–195PubMedCrossRefGoogle Scholar
  349. 349.
    Koretz RL, Avenell A, Lipman TO et al (2007) Does enteral nutrition affect clinical outcome? A systematic review of the randomized trials. Am J Gastroenterol 102(2):412–429; quiz 468PubMedCrossRefGoogle Scholar
  350. 350.
    Peter JV, Moran JL, Phillips-Hughes J (2005) A metaanalysis of treatment outcomes of early enteral versus early parenteral nutrition in hospitalized patients. Crit Care Med 33(1):213–220; discussion 260–261PubMedCrossRefGoogle Scholar
  351. 351.
    Barr J, Hecht M, Flavin KE et al (2004) Outcomes in critically ill patients before and after the implementation of an evidence-based nutritional management protocol. Chest 125(4):1446–1457PubMedCrossRefGoogle Scholar
  352. 352.
    Petros S, Engelmann L (2006) Enteral nutrition delivery and energy expenditure in medical intensive care patients. Clin Nutr 25(1):51–59PubMedCrossRefGoogle Scholar
  353. 353.
    Simpson F, Doig GS (2005) Parenteral vs. enteral nutrition in the critically ill patient: a meta-analysis of trials using the intention to treat principle. Intensive Care Med 31(1):12–23PubMedCrossRefGoogle Scholar
  354. 354.
    Druml W, Fischer M, Ratheiser K (1998) Use of intravenous lipids in critically ill patients with sepsis without and with hepatic failure. JPEN J Parenter Enteral Nutr 22(4):217–223PubMedCrossRefGoogle Scholar
  355. 355.
    Stoner HB, Little RA, Frayn KN et al (1983) The effect of sepsis on the oxidation of carbohydrate and fat. Br J Surg 70(1):32–35PubMedCrossRefGoogle Scholar
  356. 356.
    Battistella FD, Widergren JT, Anderson JT et al (1997) A prospective, randomized trial of intravenous fat emulsion administration in trauma victims requiring total parenteral nutrition. J Trauma 43(1):52–58; discussion 58–60PubMedCrossRefGoogle Scholar
  357. 357.
    Bertolini G, Iapichino G, Radrizzani D et al (2003) Early enteral immunonutrition in patients with severe sepsis: results of an interim analysis of a randomized multicentre clinical trial. Intensive Care Med 29(5):834–840PubMedCrossRefGoogle Scholar
  358. 358.
    Galban C, Montejo JC, Mesejo A et al (2000) An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med 28(3):643–648PubMedCrossRefGoogle Scholar
  359. 359.
    Heyland DK, Dhaliwal R, Drover JW et al (2003) Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr 27(5):355–373PubMedCrossRefGoogle Scholar
  360. 360.
    Radrizzani D, Bertolini G, Facchini R et al (2006) Early enteral immunonutrition vs. parenteral nutrition in critically ill patients without severe sepsis: a randomized clinical trial. Intensive Care Med 32(8):1191–1198PubMedCrossRefGoogle Scholar
  361. 361.
    Pontes-Arruda A, Aragao AM, Albuquerque JD (2006) Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock. Crit Care Med 34(9):2325–2333PubMedCrossRefGoogle Scholar
  362. 362.
    Gadek JE, DeMichele SJ, Karlstad MD et al (1999) Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group. Crit Care Med 27(8):1409–1420PubMedCrossRefGoogle Scholar
  363. 363.
    Singer P, Theilla M, Fisher H et al (2006) Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury. Crit Care Med 34(4):1033–1038PubMedCrossRefGoogle Scholar
  364. 364.
    Bakalar B, Duska F, Pachl J et al (2006) Parenterally administered dipeptide alanyl-glutamine prevents worsening of insulin sensitivity in multiple-trauma patients. Crit Care Med 34(2):381–386PubMedCrossRefGoogle Scholar
  365. 365.
    Dechelotte P, Hasselmann M, Cynober L et al (2006) L-alanyl-L-glutamine dipeptide-supplemented total parenteral nutrition reduces infectious complications and glucose intolerance in critically ill patients: the French controlled, randomized, double-blind, multicenter study. Crit Care Med 34(3):598–604PubMedCrossRefGoogle Scholar
  366. 366.
    Goeters C, Wenn A, Mertes N et al (2002) Parenteral L-alanyl-L-glutamine improves 6-month outcome in critically ill patients. Crit Care Med 30(9):2032–2037PubMedCrossRefGoogle Scholar
  367. 367.
    Heyland DK, Dhaliwal R, Day AG et al (2006) REducing deaths due to OXidative stress (The REDOXS Study): rationale and study design for a randomized trial of glutamine and antioxidant supplementation in critically-ill patients. Proc Nutr Soc 65(3):250–263PubMedCrossRefGoogle Scholar
  368. 368.
    Cook DJ, Reeve BK, Guyatt GH et al (1996) Stress ulcer prophylaxis in critically ill patients. Resolving discordant meta-analyses. JAMA 275(4):308–314PubMedCrossRefGoogle Scholar
  369. 369.
    Basso N, Bagarani M, Materia A et al (1981) Cimetidine and antacid prophylaxis of acute upper gastrointestinal bleeding in high risk patients. Controlled, randomized trial. Am J Surg 141(3):339–341PubMedCrossRefGoogle Scholar
  370. 370.
    Cook D, Guyatt G, Marshall J et al (1998) A comparison of sucralfate and ranitidine for the prevention of upper gastrointestinal bleeding in patients requiring mechanical ventilation. Canadian Critical Care Trials Group. N Engl J Med 338(12):791–797PubMedCrossRefGoogle Scholar
  371. 371.
    Conrad SA, Gabrielli A, Margolis B et al (2005) Randomized, double-blind comparison of immediate-release omeprazole oral suspension versus intravenous cimetidine for the prevention of upper gastrointestinal bleeding in critically ill patients. Crit Care Med 33(4):760–765PubMedCrossRefGoogle Scholar
  372. 372.
    Levy MJ, Seelig CB, Robinson NJ, Ranney JE (1997) Comparison of omeprazole and ranitidine for stress ulcer prophylaxis. Dig Dis Sci 42(6):1255–1259PubMedCrossRefGoogle Scholar
  373. 373.
    Dial S, Alrasadi K, Manoukian C et al (2004) Risk of clostridium difficile diarrhea among hospital inpatients prescribed proton pump inhibitors: cohort and case-control studies. CMAJ 171(1):33–38PubMedGoogle Scholar
  374. 374.
    Dial S, Delaney JA, Barkun AN, Suissa S (2005) Use of gastric acid-suppressive agents and the risk of community-acquired Clostridium difficile-associated disease. JAMA 294(23):2989–2995PubMedCrossRefGoogle Scholar
  375. 375.
    Lau JY, Sung JJ, Lee KK et al (2000) Effect of intravenous omeprazole on recurrent bleeding after endoscopic treatment of bleeding peptic ulcers. N Engl J Med 343(5):310–316PubMedCrossRefGoogle Scholar
  376. 376.
    MacLaren R, Jarvis CL, Fish DN (2001) Use of enteral nutrition for stress ulcer prophylaxis. Ann Pharmacother 35(12):1614–1623PubMedCrossRefGoogle Scholar
  377. 377.
    Cooper DJ, Walley KR, Wiggs BR, Russell JA (1990) Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. A prospective, controlled clinical study. Ann Intern Med 112(7):492–498PubMedGoogle Scholar
  378. 378.
    Mathieu D, Neviere R, Billard V et al (1991) Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical study. Crit Care Med 19(11):1352–1356PubMedCrossRefGoogle Scholar
  379. 379.
    Hébert PC, Wells G, Blajchman MA et al (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med 340(6):409–417PubMedCrossRefGoogle Scholar
  380. 380.
    Marik PE, Sibbald WJ (1993) Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA 269:3024–3029PubMedCrossRefGoogle Scholar
  381. 381.
    Lorente JA, Landin L, De Pablo R et al (1993) Effects of blood transfusion on oxygen transport variables in severe sepsis. Crit Care Med 21(9):1312–1318PubMedCrossRefGoogle Scholar
  382. 382.
    Corwin HL, Gettinger A, Fabian TC et al (2007) Efficacy and safety of epoetin alfa in critically ill patients. N Engl J Med 357(10):965–976PubMedCrossRefGoogle Scholar
  383. 383.
    Gajic O, Rana R, Winters JL et al (2007) Transfusion-related acute lung injury in the critically ill: prospective nested case-control study. Am J Respir Crit Care Med 176(9):886–891PubMedCrossRefGoogle Scholar
  384. 384.
    Vorstand und Wissenschaftlicher Beirat der Bundesärztekammer (2003) Leitlinien zur Therapie mit Blutkomponenten und Plasmaderivaten. Deutscher Ärzte-Verlag, KölnGoogle Scholar
  385. 385.
    Girard TD, Kress JP, Fuchs BD et al (2008) Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet 371(9607):126–134PubMedCrossRefGoogle Scholar
  386. 386.
    Brook AD, Ahrens TS, Schaiff R et al (1999) Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation. Crit Care Med 27(12):2609–2615PubMedCrossRefGoogle Scholar
  387. 387.
    Kress JP, Pohlman AS, O’Connor MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342(20):1471–1477PubMedCrossRefGoogle Scholar
  388. 388.
    Martin J, Bäsell K, Bürkle H et al (2005) Analgesie und Sedierung in der Intensivmedizin – Kurzversion. Anasthesiol Intensivmed 1:S1–S20Google Scholar
  389. 389.
    Payen JF, Bru O, Bosson JL et al (2001) Assessing pain in critically ill sedated patients by using a behavioral pain scale. Crit Care Med 29(12):2258–2263PubMedCrossRefGoogle Scholar
  390. 390.
    Richman PS, Baram D, Varela M, Glass PS (2006) Sedation during mechanical ventilation: a trial of benzodiazepine and opiate in combination. Crit Care Med 34(5):1395–1401PubMedCrossRefGoogle Scholar
  391. 391.
    Wagner RL, White PF, Kan PB et al (1984) Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N Engl J Med 310(22):1415–1421PubMedCrossRefGoogle Scholar
  392. 392.
    Brinker M den, Joosten KF, Liem O et al (2005) Adrenal insufficiency in meningococcal sepsis: bioavailable cortisol levels and impact of interleukin-6 levels and intubation with etomidate on adrenal function and mortality. J Clin Endocrinol Metab 90(9):5110–5117CrossRefGoogle Scholar
  393. 393.
    Malerba G, Romano-Girard F, Cravoisy A et al (2005) Risk factors of relative adrenocortical deficiency in intensive care patients needing mechanical ventilation. Intensive Care Med 31(3):388–392PubMedCrossRefGoogle Scholar
  394. 394.
    Ray DC, McKeown DW (2007) Effect of induction agent on vasopressor and steroid use, and outcome in patients with septic shock. Crit Care 11(3):R56PubMedCrossRefGoogle Scholar
  395. 395.
    Rossiter A, Souney PF, McGowan S, Carvajal P (1991) Pancuronium-induced prolonged neuromuscular blockade. Crit Care Med 19(12):1583–1587PubMedCrossRefGoogle Scholar
  396. 396.
    Partridge BL, Abrams JH, Bazemore C, Rubin R (1990) Prolonged neuromuscular blockade after long-term infusion of vecuronium bromide in the intensive care unit. Crit Care Med 18(10):1177–1179PubMedCrossRefGoogle Scholar
  397. 397.
    Vanderheyden BA, Reynolds HN, Gerold KB, Emanuele T (1992) Prolonged paralysis after long-term vecuronium infusion. Crit Care Med 20(2):304–307PubMedCrossRefGoogle Scholar
  398. 398.
    Meyer KC, Prielipp RC, Grossman JE, Coursin DB (1994) Prolonged weakness after infusion of atracurium in two intensive care unit patients. Anesth Analg 78(4):772–774PubMedCrossRefGoogle Scholar
  399. 399.
    Manthous CA, Chatila W (1994) Prolonged weakness after the withdrawal of atracurium. Am J Respir Crit Care Med 150(5 Pt 1):1441–1443PubMedGoogle Scholar
  400. 400.
    Prielipp RC, Coursin DB, Scuderi PE et al (1995) Comparison of the infusion requirements and recovery profiles of vecuronium and cisatracurium 51W89 in intensive care unit patients. Anesth Analg 81(1):3–12PubMedCrossRefGoogle Scholar
  401. 401.
    Lagneau F, D’Honneur G, Plaud B et al (2002) A comparison of two depths of prolonged neuromuscular blockade induced by cisatracurium in mechanically ventilated critically ill patients. Intensive Care Med 28(12):1735–1741PubMedCrossRefGoogle Scholar
  402. 402.
    Heyland DK, Hopman W, Coo H et al (2000) Long-term health-related quality of life in survivors of sepsis. Short form 36: a valid and reliable measure of health-related quality of life. Crit Care Med 28(11):3599–3605PubMedCrossRefGoogle Scholar
  403. 403.
    Korosec Jagodic H, Jagodic K, Podbregar M (2006) Long-term outcome and quality of life of patients treated in surgical intensive care: a comparison between sepsis and trauma. Crit Care 10(5):R134CrossRefGoogle Scholar
  404. 404.
    Granja C, Dias C, Costa-Pereira A, Sarmento A (2004) Quality of life of survivors from severe sepsis and septic shock may be similar to that of others who survive critical illness. Crit Care 8(2):R91–R98PubMedCrossRefGoogle Scholar
  405. 405.
    Bolton CF, Gilbert JJ, Hahn AF, Sibbald WJ (1984) Polyneuropathy in critically ill patients. J Neurol Neurosurg Psychiatry 47(11):1223–1231PubMedCrossRefGoogle Scholar
  406. 406.
    Tepper M, Rakic S, Haas JA, Woittiez AJ (2000) Incidence and onset of critical illness polyneuropathy in patients with septic shock. Neth J Med 56(6):211–214PubMedCrossRefGoogle Scholar
  407. 407.
    Schelling G (2008) Post-traumatic stress disorder in somatic disease: lessons from critically ill patients. Prog Brain Res 167:229–237PubMedCrossRefGoogle Scholar
  408. 408.
    Davydow DS, Gifford JM, Desai SV et al (2009) Depression in general intensive care unit survivors: a systematic review. Intensive Care Med 35(5):796–809PubMedCrossRefGoogle Scholar
  409. 409.
    Graf J, Doig GS, Cook DJ et al (2002) Randomized, controlled clinical trials in sepsis: has methodological quality improved over time? Crit Care Med 30(2):461–472PubMedCrossRefGoogle Scholar
  410. 410.
    Oostdijk EA et al. Selective decontamination on resistant Gram-negative bacterial colonization. Am J Respir Crit Care Med. Published ahead of print on December 3, 2009, doi:10.1164/rccm.200908–1210OCGoogle Scholar
  411. 411.
    Krüger WA (2009) IntensivNews 3Google Scholar
  412. 412.
    de Smet AM, Hopmans TE, Minderhoud AL et al (2009) Decontamination of the digestive tract and oropharynx: hospital acquired infections after discharge from the intensive care unit. New Engl J Med 360:20–31CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • K. Reinhart
    • 1
  • F.M.  Brunkhorst
    • 1
  • H.-G. Bone
    • 2
  • J.  Bardutzky
    • 3
  • C.-E. Dempfle
    • 4
  • H. Forst
    • 5
  • P. Gastmeier
    • 6
  • H. Gerlach
    • 7
  • M. Gründling
    • 8
  • S. John
    • 9
  • W. Kern
    • 10
  • G. Kreymann
    • 11
  • W. Krüger
    • 12
  • P. Kujath
    • 13
  • G. Marggraf
    • 14
  • J. Martin
    • 15
  • K. Mayer
    • 16
  • A. Meier-Hellmann
    • 17
  • M. Oppert
    • 18
  • C. Putensen
    • 19
  • M. Quintel
    • 20
  • M. Ragaller
    • 21
  • R. Rossaint
    • 22
  • H. Seifert
    • 23
  • C. Spies
    • 24
  • F. Stüber
    • 25
  • N. Weiler
    • 26
  • A. Weimann
    • 27
  • K. Werdan
    • 28
  • T. Welte
    • 29
  1. 1.Klinik für Anästhesiologie und IntensivtherapieUniversitätsklinikum Jena der Friedrich-Schiller-Universität JenaJenaDeutschland
  2. 2.Klinik für Anästhesiologie und operative IntensivmedizinKnappschaftskrankenhaus RecklinghausenRecklinghausenDeutschland
  3. 3.Neurologische KlinikUniversitätsklinikum ErlangenErlangenDeutschland
  4. 4.I. Medizinische KlinikUniversitätsklinikum MannheimMannheimDeutschland
  5. 5.Klinik für Anästhesiologie und operative IntensivmedizinKlinikum AugsburgAugsburgDeutschland
  6. 6.Institut für Hygiene und UmweltmedizinCharité – Universitätsmedizin BerlinBerlinDeutschland
  7. 7.Klinik für Anästhesie und operative IntensivmedizinVivantes Klinikum NeuköllnBerlinDeutschland
  8. 8.Klinik für Anästhesie und IntensivmedizinErnst-Moritz-Arndt-Universität GreifswaldGreifswaldDeutschland
  9. 9.Medizinische Klinik 4Universität Erlangen-NürnbergErlangenDeutschland
  10. 10.Institut für InfektiologieUniversitätsklinikum FreiburgFreiburgDeutschland
  11. 11.Klinik und Poliklinik für IntensivmedizinUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland
  12. 12.Klinik für Anästhesiologie und operative IntensivmedizinKlinikum KonstanzKonstanzDeutschland
  13. 13.Klinik für ChirurgieUniversitätsklinikum Schleswig-Holstein, Campus LübeckLübeckDeutschland
  14. 14.Klinik für Thorax- und kardiovaskuläre ChirurgieUniversitätsklinikum EssenEssenDeutschland
  15. 15.Klinik für AnästhesiologieKlinik am EichertGöppingenDeutschland
  16. 16.Medizinische Klinik IIJustus-Liebig-Universität GießenGießenDeutschland
  17. 17.Klinik für Anästhesie, Intensivmedizin und SchmerztherapieHELIOS Klinikum Erfurt GmbHErfurt Deutschland
  18. 18.Klinik für Nephrologie und Internistische IntensivmedizinCharité – Universitätsmedizin BerlinBerlinDeutschland
  19. 19.Klinik und Poliklinik für Anästhesiologie und operative IntensivmedizinRheinische Friedrich-Wilhelms-Universität BonnBonnDeutschland
  20. 20.Zentrum Anästhesiologie, Rettungs- und IntensivmedizinUniversitätsklinikum GöttingenGöttingenDeutschland
  21. 21.Klinik für Anästhesiologie und IntensivtherapieUniversitätsklinikum Carl Gustav Carus der Technischen Universität DresdenDresdenDeutschland
  22. 22.Klinik für AnästhesiologieUniversitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule AachenAachenDeutschland
  23. 23.Institut für Medizinische Mikrobiologie, Immunologie und HygieneKlinikum der Universität zu KölnKölnDeutschland
  24. 24.Klinik für Anästhesiologie und operative IntensivmedizinCharité – Universitätsmedizin BerlinBerlinDeutschland
  25. 25.Universitätsklinik für Anästhesiologie und SchmerztherapieInselspital BernBernSchweiz
  26. 26.Klinik für Anästhesiologie und Operative IntensivmedizinUniversitätsklinikum Schleswig Holstein, Campus KielKielDeutschland
  27. 27.Klinik für Allgemein- und ViszeralchirurgieKlinikum St. Georg gGmbHLeipzigDeutschland
  28. 28.Klinik und Poliklinik für Innere Medizin IIIKlinikum der Medizinischen Fakultät der Martin-Luther-Universität Halle-WittenbergHalleDeutschland
  29. 29.Abt. PneumologieMedizinische Hochschule HannoverHannoverDeutschland

Personalised recommendations