Skip to main content
Log in

Pharmakokinetische/pharmakodynamische Modelle für Inhalationsanästhetika

Pharmacokinetic-pharmacodynamic models for inhaled anaesthetics

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Pharmakokinetische Modelle können in physiologisch basierte und empirische Modelle unterschieden werden. Traditionell erfolgt die Beschreibung der Pharmakokinetik volatiler Anästhetika mithilfe physiologisch basierter Modelle unter Verwendung der jeweiligen Gewebe-Blut-Verteilungskoeffizienten. Die Kompartimente des empirischen Modells weisen kein anatomisches Korrelat auf, sondern sind durch das mathematische Verfahren der Parameterabschätzung entstanden. Die endexspiratorische Konzentration von volatilen Anästhetika entspricht nahezu der arteriellen Konzentration, daher kommt der Beschreibung des Übertritts zwischen Plasma und Wirkort für volatile Anästhetika eine zentrale Rolle zu. Der wichtigste Parameter ist hierbei der ke0-Wert; dieser ist eine zeitliche Konstante und beschreibt die zeitliche Verzögerung beim Übergang zwischen dem zentralen Kompartiment und dem berechneten Effektkompartiment. Die ke0-Werte für Sevofluran und Isofluran unterscheiden sich nicht; der Konzentrationsausgleich zwischen dem Zentral- und dem Effektkompartiment bei Desfluran hingegen erfolgt doppelt so schnell. In der klinischen Praxis werden volatile Anästhetika in der Regel mit N2O und/oder Opioiden kombiniert. Dabei ergibt sich eine additive Interaktion von volatilen Anästhetika und N2O. Die Interaktion zwischen volatilen Anästhetika und Opioiden ist hingegen synergistisch. Für die klinisch weit verbreitete Dreifachkombination von volatilen Anästhetika, N2O und Opioiden liegen hingegen kaum Interaktionsuntersuchungen vor.

Abstract

Pharmacokinetic models can be differentiated into two groups: physiological-based models and empirical models. Traditionally the pharmacokinetics of volatile anaesthetics are described using physiological-based models together with the respective tissue-blood distribution coefficients. The compartments of the empirical model have no anatomical equivalents and are merely the product of the mathematical procedure for parameter estimation. The end expiratory concentration of volatile anaesthetics is approximately equal to the arterial concentration and, therefore, the description of the transition between plasma and effect site for volatile anaesthetics plays a central role. The most important parameter here is the ke0 value which is a time constant and describes the time delay for the transition from the central compartment to the calculated effect compartment. The ke0 values for sevoflurane and isoflurane are the same but the concentration balance between the end-tidal concentration and the effect compartment occurs twice as quickly with desflurane. In clinical practice volatile anaesthetics are normally combined with N2O and/or opioids. This results in an additive interaction between volatile anaesthetics and N2O but a synergistic interaction of volatile anaesthetics with opioids. However, there are relatively few investigations on the interactions between the clinically widely used combination of volatile anaesthetics, N2O and opioids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14
Abb. 15
Abb. 16
Abb. 17
Abb. 18
Abb. 19
Abb. 20

Literatur

  1. Anderson RE, Barr G, Jakobsson JG (2005) Cerebral state index during anaesthetic induction: a comparative study with propofol or nitrous oxide. Acta Anaesthesiol Scand 49: 750–753

    CAS  PubMed  Google Scholar 

  2. Anderson RE, Jakobsson JG (2004) Entropy of EEG during anaesthetic induction: a comparative study with propofol or nitrous oxide as sole agent. Br J Anaesth 92: 167–170

    CAS  PubMed  Google Scholar 

  3. Antognini JF, Schwartz K (1993) Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 79: 1244–1249

    CAS  PubMed  Google Scholar 

  4. Antognini JF (1993) Hypothermia eliminates isoflurane requirements at 20 degrees C. Anesthesiology 78: 1152–1156

    CAS  PubMed  Google Scholar 

  5. Bailey JM (1989) The pharmacokinetics of volatile anesthetic agent elimination: a theoretical study. J Pharmacokinet Biopharm 17: 109–123

    CAS  PubMed  Google Scholar 

  6. Bailey JM (1997) Context-sensitive half-times and other decrement times of inhaled anesthetics. Anesth Analg 85: 681–686

    CAS  PubMed  Google Scholar 

  7. Bialas P, Ellerkmann R, Bruhn J et al. (2005) Model-independent calculation of ke0 values. Eur J Anaesth [Suppl 34] 22: A-141

  8. Bowerman B, O’Connell R (eds) (1990) Simple coefficients of determination and correlation, linear statistical models (an applied approach). PWS-KENT, Boston, pp 174–183

  9. Bruhn J, Bouillon TW, Shafer SL (2001) Onset of propofol-induced burst suppression may be correctly detected as deepening of anaesthesia by approximate entropy but not by bispectral index. Br J Anaesth 87: 505–507

    CAS  PubMed  Google Scholar 

  10. Bruhn J (2003) Vergleich verschiedener EEG-Parameter: Spektrale Eckfrequenz 95, approximate Entropie und Bispektralindex. Anaesthesiol Intensivmed 44: 17–21

    Google Scholar 

  11. Brunner MD, Braithwaite P, Jhaveri R et al. (1994) MAC reduction of isoflurane by sufentanil. Br J Anaesth 72: 42–46

    CAS  PubMed  Google Scholar 

  12. Cowles AL, Borgstedt HH, Gillies AJ (1971) Tissues weights and rates of blood flow in man for the prediction of anesthetic uptake and distribution. Anesthesiology 35: 523–526

    CAS  PubMed  Google Scholar 

  13. Cranfield KA, Bromley LM (1997) Minimum alveolar concentration of desflurane for tracheal extubation in deeply anaesthetized, unpremedicated children. Br J Anaesth 78: 370–371

    CAS  PubMed  Google Scholar 

  14. Cromwell TH, Eger EI 2nd, Stevens WC, Dolan WM (1971) Forane uptake, excretion, and blood solubility in man. Anesthesiology 35: 401–408

    CAS  PubMed  Google Scholar 

  15. Daniel M, Weiskopf RB, Noorani M, Eger EI 2nd (1998) Fentanyl augments the blockade of the sympathetic response to incision (MAC-BAR) produced by desflurane and isoflurane: desflurane and isoflurane MAC-BAR without and with fentanyl. Anesthesiology 88: 43–49

    CAS  PubMed  Google Scholar 

  16. Davis NR, Mapleson WW (1981) Structure and quantification of a physiological model of the distribution of injected agents and inhaled anaesthetics. Br J Anaesth 53: 399–405

    CAS  PubMed  Google Scholar 

  17. De Jong RH, Eger EI (1975) MAC expanded: AD50 and AD95 values of common inhalation anesthetics in man. Anesthesiology 42: 384–389

    Google Scholar 

  18. Dwyer R, Bennett HL, Eger EI 2nd, Heilbron D (1992) Effects of isoflurane and nitrous oxide in subanesthetic concentrations on memory and responsiveness in volunteers. Anesthesiology 77: 888–898

    CAS  PubMed  Google Scholar 

  19. Eger EI 2nd, Bowland T, Ionescu P et al. (1997) Recovery and kinetic characteristics of desflurane and sevoflurane in volunteers after 8-h exposure, including kinetics of degradation products. Anesthesiology 87: 517–526

    CAS  PubMed  Google Scholar 

  20. Eger EI 2nd, Gong D, Koblin DD et al. (1998) The effect of anesthetic duration on kinetic and recovery characteristics of desflurane versus sevoflurane, and on the kinetic characteristics of compound A, in volunteers. Anesth Analg 86: 414–421

    CAS  PubMed  Google Scholar 

  21. Eger EI 2nd, Johnson BH (1987) MAC of I-653 in rats, including a test of the effect of body temperature and anesthetic duration. Anesth Analg 66: 974–976

    CAS  PubMed  Google Scholar 

  22. Eger EI 2nd, Weiskopf RB, Eisenkraft (2002) The pharmacology of inhaled anesthetics. Br J Anaesth 56: 223–232

    Google Scholar 

  23. Eger EI 3rd (1987) Stability of I-653 in soda lime. Anesth Analg 66: 983–985

    CAS  PubMed  Google Scholar 

  24. Eger EI, Lampe GH, Wauk LZ et al. (1990) Clinical pharmacology of nitrous oxide: an argument for its continued use. Anesth Analg 71: 575–585

    PubMed  Google Scholar 

  25. Eger EI, Laster MJ, Gregory GA et al. (2003) Women appear to have the same minimum alveolar concentration as men: a retrospective study. Anesthesiology 99: 1059–1061

    CAS  PubMed  Google Scholar 

  26. Eger EI, Saidman LJ, Brandstater B (1965) Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology 26: 756–763

    PubMed  Google Scholar 

  27. Eger EI (2002) A brief history of the origin of minimum alveolar concentration (MAC). Anesthesiology 96: 238–239

    PubMed  Google Scholar 

  28. Eger RR, Eger EI 2nd (1985) Effect of temperature and age on the solubility of enflurane, halothane, isoflurane, and methoxyflurane in human blood. Anesth Analg 64: 640–642

    CAS  PubMed  Google Scholar 

  29. Ellerkmann R, Kreuer S, Roepcke H et al. (2005) A model-independent approach estimating ke0 values, describing the equilibration rate constant between plasma and effect-site concentration. Anesthesiology 103: A763

    Google Scholar 

  30. Ellerkmann RK, Liermann VM, Alves TM et al. (2004) Spectral entropy and bispectral index as measures of the electroencephalographic effects of sevoflurane. Anesthesiology 101: 1275–1282

    CAS  PubMed  Google Scholar 

  31. Ellerkmann RK, Soehle M, Alves TM et al. (2006) Spectral entropy and bispectral index as measures of the electroencephalographic effects of propofol. Anesth Analg 102: 1456–1462

    CAS  PubMed  Google Scholar 

  32. Fragen RJ, Dunn KL (1996) The minimum alveolar concentration (MAC) of sevoflurane with and without nitrous oxide in elderly versus young adults. J Clin Anesth 8: 352–356

    CAS  PubMed  Google Scholar 

  33. Gin T, Chan MT (1994) Decreased minimum alveolar concentration of isoflurane in pregnant humans. Anesthesiology 81: 829–832

    CAS  PubMed  Google Scholar 

  34. Glass PS, Bloom M, Kearse L et al. (1997) Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology 86: 836–847

    CAS  PubMed  Google Scholar 

  35. Glass PS (1998) Anesthetic drug interactions: an insight into general anesthesia – its mechanism and dosing strategies. Anesthesiology 88: 5–6

    CAS  PubMed  Google Scholar 

  36. Harris RS, Lazar O, Johansen JW, Sebel PS (2006) Interaction of propofol and sevoflurane on loss of consciousness and movement to skin incision during general anesthesia. Anesthesiology 104: 1170–1175

    CAS  PubMed  Google Scholar 

  37. Hill AV (1910) The possible effect of the aggregration of the molecules of hemoglobin on its dissociation curves. J Physiol 40: iv–vii

    Google Scholar 

  38. Hornbein TF, Eger EI, Winter PM et al. (1982) The minimum alveolar concentration of nitrous oxide in man. Anesth Analg 61: 553–556

    CAS  PubMed  Google Scholar 

  39. Hui TW, Short TG, Hong W et al. (1995) Additive interactions between propofol and ketamine when used for anesthesia induction in female patients. Anesthesiology 82: 641–648

    CAS  PubMed  Google Scholar 

  40. Inomata S, Suwa T, Toyooka H, Suto Y (1998) End-tidal sevoflurane concentration for tracheal extubation and skin incision in children. Anesth Analg 87: 1263–1267

    CAS  PubMed  Google Scholar 

  41. Inomata S, Yaguchi Y, Taguchi M, Toyooka H (1999) End-tidal sevoflurane concentration for tracheal extubation (MACEX) in adults: comparison with isoflurane. Br J Anaesth 82: 852–856

    CAS  PubMed  Google Scholar 

  42. Johansen JW, Sebel PS (2000) Development and clinical application of electroencephalographic bispectrum monitoring. Anesthesiology 93: 1336–1344

    CAS  PubMed  Google Scholar 

  43. Jones RM, Cashman JN, Eger EI 2nd et al. (1990) Kinetics and potency of desflurance (I-653) in volunteers. Anesth Analg 70: 3–7

    CAS  PubMed  Google Scholar 

  44. Katoh T, Bito H, Sato S (2000) Influence of age on hypnotic requirement, bispectral index, and 95% spectral edge frequency associated with sedation induced by sevoflurane. Anesthesiology 92: 55–61

    CAS  PubMed  Google Scholar 

  45. Katoh T, Ikeda K, Bito H (1997) Does nitrous oxide antagonize sevoflurane-induced hypnosis? Br J Anaesth 79: 465–468

    CAS  PubMed  Google Scholar 

  46. Katoh T, Ikeda K (1987) The minimum alveolar concentration (MAC) of sevoflurane in humans. Anesthesiology 66: 301–303

    CAS  PubMed  Google Scholar 

  47. Katoh T, Ikeda K (1998) The effects of fentanyl on sevoflurane requirements for loss of consciousness and skin incision. Anesthesiology 88: 18–24

    CAS  PubMed  Google Scholar 

  48. Katoh T, Kobayashi S, Suzuki A et al. (1999) The effect of fentanyl on sevoflurane requirements for somatic and sympathetic responses to surgical incision. Anesthesiology 90: 398–405

    CAS  PubMed  Google Scholar 

  49. Katoh T, Suguro Y, Ikeda T et al. (1993) Influence of age on awakening concentrations of sevoflurane and isoflurane. Anesth Analg 76: 348–352

    CAS  PubMed  Google Scholar 

  50. Katoh T, Uchiyama T, Ikeda K (1994) Effect of fentanyl on awakening concentration of sevoflurane. Br J Anaesth 73: 322–325

    CAS  PubMed  Google Scholar 

  51. Keller O, Kreuer S, Bruhn J et al. (2006) The accuracy of two pharmacokinetic data sets for propofol. Eur J Anaesth [Suppl 37] 23: A-513

  52. Kennedy RR, French RA, Gilles S (2004) The effect of a model-based predictive display on the control of end-tidal sevoflurane concentrations during low-flow anesthesia. Anesth Analg 99: 1159–1163

    CAS  PubMed  Google Scholar 

  53. Kennedy RR, French RA, Spencer C (2002) Predictive accuracy of a model of volatile anesthetic uptake. Anesth Analg 95: 1616–1621

    CAS  PubMed  Google Scholar 

  54. Kennedy RR (2005) The effect of using different values for the effect-site equilibrium half-time on the prediction of effect-site sevoflurane concentration: a simulation study. Anesth Analg 101: 1023–1028

    PubMed  Google Scholar 

  55. Kihara S, Yaguchi Y, Inomata S et al. (2003) Influence of nitrous oxide on minimum alveolar concentration of sevoflurane for laryngeal mask insertion in children. Anesthesiology 99: 1055–1058

    CAS  PubMed  Google Scholar 

  56. Kissin I (2000) Depth of anesthesia and bispectral index monitoring. Anesth Analg 90: 1114–1117

    CAS  PubMed  Google Scholar 

  57. Kreuer S, Bruhn J, Grundmann U et al. (2005) Comparison of 2 pharmacodynamic EEG models with and without a pharmacodynamic plateau. Eur J Anaesth 22 [Suppl 34]: A-100

  58. Kreuer S, Wilhelm W (2006) The Narcotrend Monitor. Best Pract Res Clin Anaesthesiol 20: 111–119

    CAS  PubMed  Google Scholar 

  59. Kreuer S, Bialas P, Bruhn J et al. (2005) Application of bispectral and narcotrend indices to the measurement of the electroencephalographic effects of desflurane. Anesthesiology 103: A820

    Google Scholar 

  60. Kreuer S, Biedler A, Larsen R et al. (2003) Narcotrend monitoring allows faster emergence and a reduction of drug consumption in propofol-remifentanil anesthesia. Anesthesiology 99: 34–41

    CAS  PubMed  Google Scholar 

  61. Kreuer S, Bruhn J, Biedler A et al. (2005) Dose-response relationship between sevoflurane concentrations and Narcotrend or bispectral index. Eur J Anaesth 22 [Suppl 34]: A-119

  62. Kreuer S, Bruhn J, Biedler S et al. (2006) ke0 values for propofol using different PK/PD data sets. Eur J Anaesth 23 [Suppl 37]: A-120

  63. Kreuer S, Bruhn J, Buchinger H et al. (2005) Dose-response relationship between sevoflurane concentrations and Narcotrend index. Anesthesiology 103: A823

    Google Scholar 

  64. Kreuer S, Bruhn J, Larsen R et al. (2004) Comparison of BIS and AAI as measures of anaesthetic drug effect during desflurane-remifentanil anaesthesia. Acta Anaesthesiol Scand 48: 1168–1173

    CAS  PubMed  Google Scholar 

  65. Kreuer S, Bruhn J, Larsen R et al. (2004) Application of Narcotrend index and bispectral index to the measurement of the EEG effects of isoflurane with and without burst suppression. Anesthesiology 101: 847–854

    CAS  PubMed  Google Scholar 

  66. Kreuer S, Bruhn J, Larsen R et al. (2005) Pharmakodynamisches Plateau im prozessierten EEG bei Sevofluran-Anästhesien. Wissenschaftliche Arbeitstage der DGAI, Würzburg

  67. Kreuer S, Wilhelm W, Grundmann U et al. (2004) Narcotrend index vs. bispectral index as EEG measures of anesthetic drug effect during propofol anesthesia. Anesth Analg 98: 692–697

    CAS  PubMed  Google Scholar 

  68. Lang E, Kapila A, Shlugman D et al. (1996) Reduction of isoflurane minimal alveolar concentration by remifentanil. Anesthesiology 85: 721–728

    CAS  PubMed  Google Scholar 

  69. LeDez KM, Lerman J (1987) The minimum alveolar concentration (MAC) of isoflurane in preterm neonates. Anesthesiology 67: 301–307

    CAS  PubMed  Google Scholar 

  70. Lerman J, Gregory GA, Eger EI 2nd (1984) Hematocrit and the solubility of volatile anesthetics in blood. Anesth Analg 63: 911–914

    CAS  PubMed  Google Scholar 

  71. Lerman J, Schmitt-Bantel BI, Gregory GA et al. (1986) Effect of age on the solubility of volatile anesthetics in human tissues. Anesthesiology 65: 307–311

    CAS  PubMed  Google Scholar 

  72. Lerman J, Willis MM, Gregory GA, Eger EI 2nd (1983) Osmolarity determines the solubility of anesthetics in aqueous solutions at 37 degrees C. Anesthesiology 59: 554–558

    CAS  PubMed  Google Scholar 

  73. Lerou JG, Dirksen R, Beneken Kolmer HH et al. (1991) A system model for closed-circuit inhalation anesthesia. II. Clinical validation. Anesthesiology 75: 230–237

    CAS  PubMed  Google Scholar 

  74. Lerou JG, Dirksen R, Beneken Kolmer HH, Booij LH (1991) A system model for closed-circuit inhalation anesthesia. I. Computer study. Anesthesiology 75: 345–355

    CAS  PubMed  Google Scholar 

  75. Lerou JG (2004) Nomogram to estimate age-related MAC. Br J Anaesth 93: 288–291

    CAS  PubMed  Google Scholar 

  76. Levitt DG (2002) PKQuest: volatile solutes – application to enflurane, nitrous oxide, halothane, methoxyflurane and toluene pharmacokinetics. BMC Anesthesiology 2: 5

    PubMed  PubMed Central  Google Scholar 

  77. Locher S, Stadler KS, Boehlen T et al. (2004) A new closed-loop control system for isoflurane using bispectral index outperforms manual control. Anesthesiology 101: 591–602

    CAS  PubMed  Google Scholar 

  78. Lockwood GG, Sapsed-Byrne SM, Smith MA (1997) Effect of temperature on the solubility of desflurane, sevoflurane, enflurane and halothane in blood. Br J Anaesth 79: 517–520

    CAS  PubMed  Google Scholar 

  79. Loomis AL, Harvey EN, Hobart CA (1937) Cerebral states during sleep as studied by human brain potentials. J Exp Psychol 21: 127–144

    Google Scholar 

  80. Malviya S, Lerman J (1990) The blood/gas solubilities of sevoflurane, isoflurane, halothane, and serum constituent concentrations in neonates and adults. Anesthesiology 72: 793–796

    CAS  PubMed  Google Scholar 

  81. Mapleson WW (1996) Effect of age on MAC in humans: a meta-analysis. Br J Anaesth 76: 179–185

    CAS  PubMed  Google Scholar 

  82. Marsh B, White M, Morton N, Kenny GN (1991) Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 67: 41–48

    CAS  PubMed  Google Scholar 

  83. McEwan AI, Smith C, Dyar O et al. (1993) Isoflurane minimum alveolar concentration reduction by fentanyl. Anesthesiology 78: 864–869

    CAS  PubMed  Google Scholar 

  84. McKay ID, Voss LJ, Sleigh JW et al. (2006) Pharmacokinetic-pharmacodynamic modeling the hypnotic effect of sevoflurane using the spectral entropy of the electroencephalogram. Anesth Analg 102: 91–97

    CAS  PubMed  Google Scholar 

  85. Nakajima R, Nakajima Y, Ikeda K (1993) Minimum alveolar concentration of sevoflurane in elderly patients. Br J Anaesth 70: 273–275

    CAS  PubMed  Google Scholar 

  86. Nickalls RW, Mapleson WW (2003) Age-related iso-MAC charts for isoflurane, sevoflurane and desflurane in man. Br J Anaesth 91: 170–174

    CAS  PubMed  Google Scholar 

  87. Olofsen E, Dahan A (1999) The dynamic relationship between end-tidal sevoflurane and isoflurane concentrations and bispectral index and spectral edge frequency of the electroencephalogram. Anesthesiology 90: 1345–1353

    CAS  PubMed  Google Scholar 

  88. Olofsen E, Sleigh JW, Dahan A (2002) The influence of remifentanil on the dynamic relationship between sevoflurane and surrogate anesthetic effect measures derived from the EEG. Anesthesiology 96: 555–564

    CAS  PubMed  Google Scholar 

  89. Rampil IJ, Lockhart SH, Zwass MS et al. (1991) Clinical characteristics of desflurane in surgical patients: minimum alveolar concentration. Anesthesiology 74: 429–433

    CAS  PubMed  Google Scholar 

  90. Rampil IJ, Mason P, Singh H (1993) Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 78: 707–712

    CAS  PubMed  Google Scholar 

  91. Rampil IJ (1994) Anesthetic potency is not altered after hypothermic spinal cord transection in rats. Anesthesiology 80: 606–610

    CAS  PubMed  Google Scholar 

  92. Rampil IJ (1998) A primer for electroencephalogram signal processing in anesthesia. Anesthesiology 89: 980–1002

    CAS  PubMed  Google Scholar 

  93. Rehberg B, Bouillon T, Zinserling J, Hoeft A (1999) Comparative pharmacodynamic modeling of the electroencephalography-slowing effect of isoflurane, sevoflurane, and desflurane. Anesthesiology 91: 397–405

    CAS  PubMed  Google Scholar 

  94. Rietbrock S, Wissing H, Kuhn I, Fuhr U (2000) Pharmacokinetics of inhaled anaesthetics in a clinical setting: description of a novel method based on routine monitoring data. Br J Anaesth 84: 437–442

    CAS  PubMed  Google Scholar 

  95. Roizen MF, Horrigan RW, Frazer BM (1981) Anesthetic doses blocking adrenergic (stress) and cardiovascular responses to incision – MAC BAR. Anesthesiology 54: 390–398

    CAS  PubMed  Google Scholar 

  96. Ropcke H, Konen-Bergmann M, Cuhls M et al. (2001) Propofol and remifentanil pharmacodynamic interaction during orthopedic surgical procedures as measured by effects on bispectral index. J Clin Anesth 13: 198–207

    CAS  PubMed  Google Scholar 

  97. Ropcke H, Lier H, Hoeft A, Schwilden H (1999) Isoflurane, nitrous oxide, and fentanyl pharmacodynamic interactions in surgical patients as measured by effects on median power frequency. J Clin Anesth 11: 555–562

    CAS  PubMed  Google Scholar 

  98. Ropcke H, Schwilden H (1996) Die Interaktion von Stickoxidul und Enfluran bei einem EEG-Median von 2–3 Hz ist additiv, aber schwacher als bei 1,0 MAC. Anaesthesist 45: 819–825

    CAS  PubMed  Google Scholar 

  99. Ropcke H, Schwilden H (1996) Interaction of isoflurane and nitrous oxide combinations similar for median electroencephalographic frequency and clinical anesthesia. Anesthesiology 84: 782–788

    CAS  PubMed  Google Scholar 

  100. Ropcke H, Wirz S, Bouillon T et al. (2001) Pharmacodynamic interaction of nitrous oxide with sevoflurane, desflurane, isoflurane and enflurane in surgical patients: measurements by effects on EEG median power frequency. Eur J Anaesthesiol 18: 440–449

    CAS  PubMed  Google Scholar 

  101. Russell GB, Snider MT, Richard RB, Loomis JL (1990) Hyperbaric nitrous oxide as a sole anesthetic agent in humans. Anesth Analg 70: 289–295

    CAS  PubMed  Google Scholar 

  102. Saidman LJ, Eger EI (1964) Effect of nitrous oxide and of narcotic premedication on the alveolar concentration of halothane required for anesthesia. Anesthesiology 25: 302–306

    CAS  PubMed  Google Scholar 

  103. Scheller MS, Saidman LJ, Partridge BL (1988) MAC of sevoflurane in humans and the New Zealand white rabbit. Can J Anaesth 35: 153–156

    CAS  PubMed  Google Scholar 

  104. Schmidt GN, Bischoff P, Standl T et al. (2002) Narcotrend, bispectral index, and classical electroencephalogram variables during emergence from propofol/remifentanil anesthesia. Anesth Analg 95: 1324–1330

    CAS  PubMed  Google Scholar 

  105. Schnider TW, Minto CF, Gambus PL et al. (1998) The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 88: 1170–1182

    CAS  PubMed  Google Scholar 

  106. Schultz B, Kreuer S, Wilhelm W et al. (2003) The Narcotrend monitor. Development and interpretation algorithms. Anaesthesist 52: 1143–1148

    CAS  PubMed  Google Scholar 

  107. Schwilden H, Ropcke H, Drosler S (1995) Die klinische Potenz von Stickoxidul – Ist MAC der Goldstandard? Anasthesiol Intensivmed Notfallmed Schmerzther 30: 337–340

    CAS  PubMed  Google Scholar 

  108. Schwilden H, Schüttler J, Stoeckel H (1987) Closed-loop feedback control of methohexital anesthesia by quantitative EEG analysis in humans. Anesthesiology 67: 341–347

    CAS  PubMed  Google Scholar 

  109. Schwilden H, Stoeckel H (1987) Quantitative EEG analysis during anaesthesia with isoflurane in nitrous oxide at 1.3 and 1.5 MAC. Br J Anaesth 59: 738–745

    CAS  PubMed  Google Scholar 

  110. Shafer SL (2004) Pharmacokinetic and pharmacodynamic analysis with NONMEM – basic concepts. Workshop, Palo Alto, California, USA, 9.17

  111. Smith WD, Dutton RC, Smith NT (1996) Measuring the performance of anesthetic depth indicators. Anesthesiology 84: 38–51

    CAS  PubMed  Google Scholar 

  112. Stevens WD, Dolan WM, Gibbons RT et al. (1975) Minimum alveolar concentrations (MAC) of isoflurande with and without nitrous oxide in patients of various ages. Anesthesiology 42: 197–200

    CAS  PubMed  Google Scholar 

  113. Strum DP, Eger EI 2nd (1987) Partition coefficients for sevoflurane in human blood, saline, and olive oil. Anesth Analg 66: 654–656

    CAS  PubMed  Google Scholar 

  114. Swan HD, Crawford MW, Pua HL et al. (1999) Additive contribution of nitrous oxide to sevoflurane minimum alveolar concentration for tracheal intubation in children. Anesthesiology 91: 667–671

    CAS  PubMed  Google Scholar 

  115. Taheri S, Eger EI 2nd (1999) A demonstration of the concentration and second gas effects in humans anesthetized with nitrous oxide and desflurane. Anesth Analg 89: 774–780

    CAS  PubMed  Google Scholar 

  116. Torri G, Damia G, Fabiani ML (1974) Effect on nitrous oxide on the anaesthetic requirement of enflurane. Br J Anaesth 46: 468–472

    CAS  PubMed  Google Scholar 

  117. Wadhwa A, Durrani J, Sengupta P et al. (2003) Women have the same desflurane minimum alveolar concentration as men: a prospective study. Anesthesiology 99: 1062–1065

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Westmoreland CL, Sebel PS, Gropper A (1994) Fentanyl or alfentanil decreases the minimum alveolar anesthetic concentration of isoflurane in surgical patients. Anesth Analg 78: 23–28

    CAS  PubMed  Google Scholar 

  119. Wilhelm W, Kreuer S (2003) Das interpretierte EEG als Überwachungsverfahren in der Anästhesiologie. Anasthesiol Intensivmed 44: 8–15

    Google Scholar 

  120. Yasuda N, Lockhart SH, Eger EI 2nd et al. (1991) Kinetics of desflurane, isoflurane, and halothane in humans. Anesthesiology 74: 489–498

    CAS  PubMed  Google Scholar 

  121. Yasuda N, Lockhart SH, Eger EI 2nd et al. (1991) Comparison of kinetics of sevoflurane and isoflurane in humans. Anesth Analg 72: 316–324

    CAS  PubMed  Google Scholar 

  122. Yasuda N, Targ AG, Eger EI et al. (1990) Pharmacokinetics of desflurane, sevoflurane, isoflurane, and halothane in pigs. Anesth Analg 71: 340–348

    CAS  PubMed  Google Scholar 

  123. Yasuda N, Targ AG, Eger El (1989) Solubility if I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesth Analg 69: 370–373

    CAS  PubMed  Google Scholar 

  124. Yasuda N, Weiskopf RB, Cahalan MK et al. (1991) Does desflurane modify circulatory responses to stimulation in humans? Anesth Analg. 73: 175–179

  125. Zbinden AM, Maggiorini M, Petersen-Felix S et al. (1994) Anesthetic depth defined using multiple noxious stimuli during isoflurane/oxygen anesthesia. I. Motor reactions. Anesthesiology 80: 253–260

    CAS  PubMed  Google Scholar 

  126. Zhou JX, Liu J (2001) The effect of temperature on solubility of volatile anesthetics in human tissues. Anesth Analg 93: 234–238

    CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kreuer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreuer, S., Bruhn, J., Wilhelm, W. et al. Pharmakokinetische/pharmakodynamische Modelle für Inhalationsanästhetika. Anaesthesist 56, 538–556 (2007). https://doi.org/10.1007/s00101-007-1188-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-007-1188-7

Schlüsselwörter

Keywords

Navigation