Skip to main content
Log in

Beatmung eines ungeschützten Atemwegs

Evaluation eines neuen spitzenfluss- und druckbegrenzenden Beatmungsbeutels

Ventilation of an unprotected airway

Evaluation of a new peak-inspiratory-flow and airway-pressure-limiting bag-valve-mask

  • Originalien
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Beim ungeschützten Luftweg werden aktuell nach 30 Thoraxkompressionen 2 Beatmungen mit einer Inspirationszeit von 1 s empfohlen; damit benötigt die Ventilation ca. 15% statt bisher ca. 40% der Reanimationszeit.

Methoden

Im Simulationsmodell wurde untersucht, wie sich eine von 2 auf 1 s reduzierte Beatmungszeit durch einen neuartigen spitzenfluss- und druckbegrenzenden Beatmungsbeutel (Smart-Bag®) bei kontinuierlich abfallendem unteren Ösophagussphinkterdruck (UÖSD) auf Atemmechanik und Magenbeatmung auswirkt.

Ergebnisse

Eine Verkürzung der Inspirationszeit von 2 auf 1 s führte zu niedrigeren Atemwegspitzendrücken bei einem UÖSD von 0,49 kPa (5 cmH2O), 0,98 kPa (10 cmH2O) sowie 1,47 kPa (15 cmH2O) und bei 1,96 kPa (20 cmH2O) zu höheren Atemwegsspitzendrücken. Die Lungentidalvolumina waren bei 1 s gegenüber 2 s erniedrigt. Bei einer Verkürzung der Inspirationszeit von 2 auf 1 s kam es nur bei einem UÖSD von 0,49 kPa (5 cmH2O) zu einer Magenbeatmung.

Schlussfolgerung

In diesem Simulationsmodell eines Lungengesunden mit ungeschütztem Atemweg führte eine von 2 auf 1 s reduzierte Inspirationszeit bei Anwendung des Smart-Bag® zu vergleichbaren inspiratorischen Spitzendrücken und erniedrigten, aber klinisch vergleichbaren Lungentidalvolumina. Eine Magenbeatmung trat nur bei einem UÖSD von 0,49 kPa (5 cmH2O) auf und war bei einer Beatmungszeit von 2 s höher als bei 1 s.

Abstract

Background

Currently 30 chest compressions and 2 ventilations with an inspiratory time of 1 s are recommended during cardiopulmonary resuscitation with an unprotected airway, thus spending about 15% instead of 40% of resuscitation time on ventilation. Time could be gained for chest compressions when reducing inspiratory time from 2 s to 1 s, however, stomach inflation may increase as well.

Methods

In an established bench model we evaluated the effect of reducing inspiratory time from 2 s to 1 s at different lower oesophageal sphincter pressure (LOSP) levels using a novel peak inspiratory-flow and peak airway-pressure-limiting bag-valve-mask device (Smart-Bag™).

Results

A reduction of inspiratory time from 2 s to 1 s resulted in significantly lower peak airway pressure with LOSP of 0.49 kPa (5 cmH2O), 0.98 kPa (10 cmH2O) and 1.47 kPa (15 cmH2O) and an increase with 1.96 kPa (20 cmH2O). Lung tidal volume was reduced with 1 s compared to 2 s. When reducing inspiratory time from 2 s to 1 s, stomach inflation occurred only at a LOSP of 0.49 kPa (5 cmH2O).

Conclusions

In this model of a simulated unprotected airway, a reduction of inspiratory time from 2 s to 1 s using the Smart-Bag™ resulted in comparable inspiratory peak airway pressure and lower, but clinically comparable, lung tidal volume. Stomach inflation occurred only at a LOSP of 0.49 kPa (5 cmH2O), and was higher with an inspiratory time of 2 s vs 1 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Anonymous (2000) Guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care. International consensus on science. Resuscitation 46:1–447

    Article  PubMed  Google Scholar 

  2. Aufderheide TP, Sigurdsson G, Pirrallo RG et al. (2004) Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation 109: 1960–1965

    Article  PubMed  Google Scholar 

  3. Baskett P, Nolan J, Parr M (1996) Tidal volumes which are perceived to be adequate for resuscitation. Resuscitation 31: 231–234

    Article  PubMed  Google Scholar 

  4. Berg RA, Sanders AB, Kern KB et al. (2001) Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation 104: 2465–2470

    PubMed  Google Scholar 

  5. Bowman FP, Menegazzi JJ, Check BD, Duckett TM (1995) Lower esophageal sphincter pressure during prolonged cardiac arrest and resuscitation. Ann Emerg Med 26: 216–219

    Article  PubMed  Google Scholar 

  6. Davis K Jr, Johannigman JA, Johnson RC Jr, Branson RD (1995) Lung compliance following cardiac arrest. Acad Emerg Med 2: 874–878

    PubMed  Google Scholar 

  7. Gabrielli A, Wenzel V, Layon J et al. (2005) Lower esophageal sphincter pressure-measurement during cardiac arrest in humans: potential implications for ventilation of the unprotected airway. Anesthesiology 103: 897–899

    Article  PubMed  Google Scholar 

  8. Gallagher EJ, Lombardi G, Gennis P (1995) Effectiveness of bystander cardiopulmonary resuscitation and survival following out-of-hospital cardiac arrest. JAMA 274: 1922–1925

    Article  PubMed  Google Scholar 

  9. Goedecke A von, Wagner-Berger HG, Stadlbauer KH et al. (2004) Effects of decreasing peak flow rate on stomach inflation during bag-valve-mask ventilation. Resuscitation 63: 131–136

    Article  PubMed  Google Scholar 

  10. Goedecke A von, Bowden K, Keller C et al. (2005) Verkürzte Inspirationszeit während der Beatmung eines ungeschützten Atemweges. Effekt auf die Magen- und Lungenbeatmung im Simulationsmodell. Anaesthesist 54: 117–122

    Article  PubMed  Google Scholar 

  11. Goedecke A von, Bowden K, Wenzel V et al. (2005) Effects of decreasing inspiratory times during simulated bag-valve-mask ventilation. Resuscitation 64: 321–325

    Article  PubMed  Google Scholar 

  12. Goedecke A von, Keller C, Voelckel WG et al. (2005) Die Maskenbeatmung als Rückzugsstrategie zur endotrachealen Intubation. Anaesthesist 55: 70–79

    Article  Google Scholar 

  13. Idris AH, Banner MJ, Wenzel V et al. (1994) Ventilation caused by external chest compression is unable to sustain effective gas exchange during CPR: a comparison with mechanical ventilation. Resuscitation 28: 143–150

    Article  PubMed  Google Scholar 

  14. Markstaller K, Eberle B, Dick WF (2004) Kardiopulmonale Reanimation „oben ohne“. Mode oder Wissenschaft? Anaesthesist 53: 927–936

    Article  PubMed  Google Scholar 

  15. Nolan JP, Deakin CD, Soar J, Bottiger BW, Smith G; European Resuscitation Council (2005) European Resuscitation Council guidelines for resuscitation 2005. Section 4. Adult advanced life support. Resuscitation 67 [Suppl 1]: S39–86

    Article  Google Scholar 

  16. Paradis NA, Martin GB, Goetting MG et al. (1989) Simultaneous aortic, jugular bulb, and right atrial pressures during cardiopulmonary resuscitation in humans. Insights into mechanisms. Circulation 80: 361–368

    PubMed  Google Scholar 

  17. Sanders AB, Kern KB, Berg RA et al. (2002) Survival and neurologic outcome after cardiopulmonary resuscitation with four different chest compression-ventilation ratios. Ann Emerg Med 40: 553–562

    Article  PubMed  Google Scholar 

  18. Sato Y, Weil MH, Sun S et al. (1997) Adverse effects of interrupting precordial compression during cardiopulmonary resuscitation. Crit Care Med 25: 733–736

    Article  PubMed  Google Scholar 

  19. Stallinger A, Wenzel V, Wagner-Berger H et al. (2002) Effects of decreasing inspiratory flow rate during simulated basic life support ventilation of a cardiac arrest patient on lung and stomach tidal volumes. Resuscitation 54: 167–173

    Article  PubMed  Google Scholar 

  20. Stallinger A, Wenzel V, Wagner-Berger HG et al. (2004) A strategy to optimise the performance of the mouth-to-bag resuscitator using small tidal volumes: effects on lung and gastric ventilation in a bench model of an unprotected airway. Resuscitation 61: 69–74

    Article  PubMed  Google Scholar 

  21. Sunde K, Wik L, Naess PA et al. (1998) Improved haemodynamics with increased compression-decompression rates during ACD-CPR in pigs. Resuscitation 39: 197–205

    Article  PubMed  Google Scholar 

  22. Wagner-Berger HG, Wenzel V, Voelckel WG et al. (2003) A pilot study to evaluate the SMART BAG: a new pressure-responsive, gas-flow limiting bag-valve-mask device. Anesth Analg 97: 1686–1689

    Article  PubMed  Google Scholar 

  23. Weil MH, Rackow EC, Trevino R et al. (1986) Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med 315: 153–156

    PubMed  Google Scholar 

  24. Wenzel V, Idris AH, Banner MJ et al. (1998) Influence of tidal volume on the distribution of gas between the lungs and stomach in the nonintubated patient receiving positive-pressure ventilation. Crit Care Med 26: 364–368

    Article  PubMed  Google Scholar 

  25. Wenzel V, Keller C, Idris AH et al. (1999) Effects of smaller tidal volumes during basic life support ventilation in patients with respiratory arrest: good ventilation, less risk? Resuscitation 43: 25–29

    Article  PubMed  Google Scholar 

  26. Wik L, Steen PA, Bircher NG (1994) Quality of bystander cardiopulmonary resuscitation influences outcome after prehospital cardiac arrest. Resuscitation 28: 195–203

    Article  PubMed  Google Scholar 

  27. Wik L, Hansen TB, Fylling F et al. (2003) Delaying defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation: a randomized trial. JAMA 289: 1389–1395

    Article  PubMed  Google Scholar 

  28. Wik L, Kramer-Johansen J, Myklebust H et al. (2005) Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 293: 299–304

    Article  PubMed  Google Scholar 

  29. Winkler M, Mauritz W, Hackl W et al. (1998) Effects of half the tidal volume during cardiopulmonary resuscitation on acid-base balance and haemodynamics in pigs. Eur J Emerg Med 5: 201–206

    PubMed  Google Scholar 

  30. Yu T, Wei MHl, Tang W (2002) Adverse outcomes of interrupted precordial compression during automated defibrillation. Circulation 106: 368–372

    Article  PubMed  Google Scholar 

Download references

Danksagung

Diese Studie wurde durch die Österreichische Nationalbank, Projekt Nr. 9513 und 11448, Wien, Österreich, unterstützt.

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. von Goedecke M. Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Goedecke, A., Paal, P., Keller, C. et al. Beatmung eines ungeschützten Atemwegs. Anaesthesist 55, 629–634 (2006). https://doi.org/10.1007/s00101-006-1013-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-006-1013-8

Schlüsselwörter

Keywords

Navigation