Skip to main content
Log in

Regulation der spinalen Expression von Nociceptin unter neuropathischen Schmerzen

Regulation of spinal nociceptin expression by neuropathic pain

  • Originalien
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Nociceptin ist der endogene Ligand eines neuen Opioidrezeptors, des „opioid receptor-like-1 receptor“ (ORL1-Rezeptor). Chronische inflammatorische Schmerzen gehen mit einer Steigerung der Expression von Nociceptin und dem ORL1-Rezeptor im Hinterhorn des Rückenmarks der Ratte einher; dies weist auf eine Beteiligung des endogenen Nociceptin-ORL1-Systems an der Genese pathologischer Schmerzzustände hin. In der vorliegenden Studie wird der Einfluss neuropathischer Schmerzen auf die Nociceptin-Expression mithilfe der Immunhistochemie untersucht. Zur Induktion neuropathischer Schmerzen wurde der N. ischiadicus bei 12 Ratten in Allgemeinanästhesie ligiert. Bei den 12 Ratten der Kontrollgruppe wurde eine Scheinoperation durchgeführt. Die Nervenligatur führte zu einer signifikanten thermischen Hyperalgesie auf der ipsilateralen Seite, einem typischen Zeichen neuropathischer Schmerzen; die Pfotenrückzugslatenz war an Tag 5 um 45,7±4,9% (p<0,05) und an Tag 10 um 37,3±1,8% (p<0,05) vermindert. Obwohl die Hyperalgesie bereits nach 5 Tagen voll ausgeprägt war, ließen sich zu diesem Zeitpunkt noch keine Veränderungen der Nociceptin-Expression im lumbalen Rückenmark feststellen. Zehn Tage nach Nervenligatur fand sich ein 2,46±0,38facher (p<0,05) bilateraler Anstieg der Nociceptin-Expression in den Laminae superficiales (I--II) im Hinterhorn des Rückenmarks im Segment L4. Die genauen funktionellen Zusammenhänge zwischen neuropathischen Schmerzen, dem Nociceptin-ORL1-Rezeptor-System und potenziellen Therapiestrategien müssen in weiteren Experimenten untersucht werden.

Abstract

Nociceptin is the endogenous ligand of a new opioid receptor, the opioid receptor-like-1 (ORL1) receptor. Chronic inflammatory pain causes an increase in the expression of nociceptin and the ORL1 receptor in the dorsal horn of rat spinal cord, thus indicating an involvement of the endogenous nociceptin/ORL1 system in mechanisms of pathological pain. This study investigates the influence of neuropathic pain on the expression of nociceptin using immunohistochemistry. To induce neuropathic pain, a ligation of the sciatic nerve was performed in 12 rats under general anesthesia. A sham operation was performed in 12 rats of the control group. Nerve ligation caused a significant ipsilateral thermal hyperalgesia, a typical sign of neuropathic pain. The paw withdrawal latency was decreased by 45.7±4.9% (p<0.05) at day 5 and by 37.3±1.8% (p<0.05) at day 10. Although hyperalgesia was fully present after 5 days, no changes in nociceptin immunoreactivity in the lumbar spinal cord were detected at this time point. Ten days after nerve ligation, there was a 2.46±0.38 fold (p<0.05) bilateral increase in nociceptin immunoreactivity in the lamina superficiales (I and II), with a notable increase in the inner lamina II at the level of L4. Further investigations are necessary to elucidate the relationship between neuropathic pain, the nociceptin-ORL1 receptor system and potential therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a, b
Abb. 2
Abb. 3a--d

Literatur

  1. Abbadie C, Brown JL, Mantyh PW, Basbaum AI (1996) Spinal cord substance P receptor immunoreactivity increases in both inflammatory and nerve injury models of persistent pain. Neuroscience 70:201–209

    Google Scholar 

  2. Abdulla FA, Smith PA (1998) Axotomy reduces the effect of analgesic opioids yet increases the effect of nociceptin on dorsal root ganglion neurons. J Neurosci 18:9685–9694

    Google Scholar 

  3. Andoh T, Itoh M, Kuraishi Y (1997) Nociceptin gene expression in rat dorsal root ganglia induced by peripheral inflammation. Neuroreport 8:2793–2796

    Google Scholar 

  4. Basbaum AI, Fields HL (1979) The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation. J Comp Neurol 187:513–531

    Google Scholar 

  5. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Google Scholar 

  6. Briscini L, Corradini C, Ongini E, Bertorelli R (2002) Up-regulation of ORL-1 receptors in spinal tissue of allodynic rats after sciatic nerve injury. Eur J Pharmacol 447:59–65

    Google Scholar 

  7. Chaouch A, Menetrey D, Binder D, Besson JM (1983) Neurons at the origin of the medial component of the bulbopontine spinoreticular tract in the rat: an anatomical study using horseradish peroxidase retrograde transport. J Comp Neurol 214:309–320

    Google Scholar 

  8. Dellemijn PL, Vanneste JA (1997) Randomized double-blind active-placebo-controlled crossover trial of intravenous fentanyl in neuropathic pain. Lancet 349:753–758

    Google Scholar 

  9. Grond S, Radbruch L, Meuser T, Sabatowski R, Loick G, Lehmann KA (1999) Assessment and treatment of neuropathic cancer pain following WHO guidelines. Pain 79:15–20

    Google Scholar 

  10. Grond S, Meuser T, Pietruck C, Sablotzki A (2002) Nociceptin und der ORL1-Rezeptor. Pharmakologie eines neuen Opioidrezeptors. Anaesthesist 51:996–1005

    Google Scholar 

  11. Hara N, Minami T, Okuda-Ashitaka E et al. (1997) Characterization of nociceptin hyperalgesia and allodynia in conscious mice. Br J Pharmacol 121:401–408

    Google Scholar 

  12. Hebel R, Stromberg MW (1976) Anatomy of the laboratory rat. Williams & Wilkins, Baltimore, pp 119–144

  13. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    Google Scholar 

  14. Inoue M, Shimohira I, Yoshida A, Zimmer A, Takeshima H, Sakurada T, Ueda H (1999) Dose-related opposite modulation by nociceptin/orphanin FQ of substance P nociception in the nociceptors and spinal cord. J Pharmacol Exp Ther 291:308–313

    Google Scholar 

  15. Jansen AS, Loewy AD (1997) Neurons lying in the white matter of the upper cervical spinal cord project to the intermediolateral cell column. Neuroscience 77:889–898

    Google Scholar 

  16. Jia Y, Linden DR, Serie JR, Seybold VS (1998) Nociceptin/orphanin FQ binding increases in superficial laminae of the rat spinal cord during persistent peripheral inflammation. Neurosci Lett 250:21–24

    Google Scholar 

  17. Jiang MC, Liu L, Gebhart GF (1999) Cellular properties of lateral spinal nucleus neurons in the rat L6-S1 spinal cord. J Neurophysiol 81:3078–3086

    Google Scholar 

  18. King MA, Rossi GC, Chang AH, Williams L, Pasternak GW (1997) Spinal analgesic activity of orphanin FQ/nociceptin and its fragments. Neurosci Lett 223:113–116

    Google Scholar 

  19. Lai CC, Wu SY, Dun SL, Dun NJ (1997) Nociceptin-like immunoreactivity in the rat dorsal horn and inhibition of substantia gelatinosa neurons. Neuroscience 81:887–891

    Google Scholar 

  20. Lu JT, Huang YH, Palmer PP, Xie GX, Gabriel A, Grond S, Yu LC (2001) Blockade effects of (Nphe1)Nociceptin(1–13)-NH(2) on anti-nociception induced by intrathecal administration of nociceptin in rats. Regul Pept 101:81–85

    Google Scholar 

  21. Malan TP, Ossipov MH, Gardell LR et al. (2000) Extraterritorial neuropathic pain correlates with multisegmental elevation of spinal dynorphin in nerve-injured rats. Pain 86:185–194

    Google Scholar 

  22. Malmberg AB, Chen C, Tonegawa S, Basbaum AI (1997) Preserved acute pain and reduced neuropathic pain in mice lacking PKCgamma. Science 278:279–283

    Google Scholar 

  23. Menetrey D, Roudier F, Besson JM (1983) Spinal neurons reaching the lateral reticular nucleus as studied in the rat by retrograde transport of horseradish peroxidase. J Comp Neurol 220:429–452

    Google Scholar 

  24. Meunier JC, Mollereau C, Toll L et al. (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–535

    Google Scholar 

  25. Mollereau C, Parmentier M, Mailleux P et al. (1994) ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett 341:33–38

    Google Scholar 

  26. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Akil H, Watson SJ Jr (1999) Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with (125)I-(14)Tyr]-orphanin FQ binding. J Comp Neurol 412:563–605

    Google Scholar 

  27. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Watson SJ Jr (1999) Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol 406:503–547

    Google Scholar 

  28. Pettersson LM, Sundler F, Danielsen N (2002) Expression of orphanin FQ/nociceptin and its receptor in rat peripheral ganglia and spinal cord. Brain Res 945:266–275

    Google Scholar 

  29. Riedl M, Shuster S, Vulchanova L, Wang J, Loh HH, Elde R (1996) Orphanin FQ/nociceptin-immunoreactive nerve fibers parallel those containing endogenous opioids in rat spinal cord. Neuroreport 7:1369–1372

    Google Scholar 

  30. Rosen A, Lundeberg T, Bytner B, Nylander I (2000) Central changes in nociceptin dynorphin B and Met-enkephalin-Arg-Phe in different models of nociception. Brain Res 857:212–218

    Google Scholar 

  31. Schulz S, Schreff M, Nuss D, Gramsch C, Hollt V (1996) Nociceptin/orphanin FQ and opioid peptides show overlapping distribution but not co-localization in pain-modulatory brain regions. Neuroreport 7:3021–3025

    Google Scholar 

  32. Stute P, Soukup J, Menzel M, Sabatowski R, Grond S (2003) Analysis and treatment of different types of neuropathic cancer pain. J Pain Symptom Manage 26:1123–1131

    Google Scholar 

  33. Woolf CJ, Mannion RJ (1999) Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353:1959–1964

    Google Scholar 

  34. Xu XJ, Hao JX, Wiesenfeld-Hallin Z (1996) Nociceptin or antinociceptin: potent spinal antinociceptive effect of orphanin FQ/nociceptin in the rat. Neuroreport 7:2092–2094

    Google Scholar 

  35. Yamamoto T, Nozaki-Taguchi N (1997) Effects of intrathecally administered nociceptin, an opioid receptor-like1 receptor agonist, and N-methyl-D-aspartate receptor antagonists on the thermal hyperalgesia induced by partial sciatic nerve injury in the rat. Anesthesiology 87:1145–1152

    Google Scholar 

  36. Yamamoto T, Nozaki-Taguchi N, Kimura S (1997) Analgesic effect of intrathecally administered nociceptin, an opioid receptor-like1 receptor agonist, in the rat formalin test. Neuroscience 81:249–254

    Google Scholar 

  37. Yamamoto T, Nozaki-Taguchi N, Kimura S (1997) Effects of intrathecally administered nociceptin, an opioid receptor- like1 (ORL1) receptor agonist, on the thermal hyperalgesia induced by carageenan injection into the rat paw. Brain Res 754:329–332

    Google Scholar 

  38. Yamamoto T, Nozaki-Taguchi N, Kimura S (1997) Effects of intrathecally administered nociceptin, an opioid receptor- like1 (ORL1) receptor agonist, on the thermal hyperalgesia induced by unilateral constriction injury to the sciatic nerve in the rat. Neurosci Lett 224:107–110

    Google Scholar 

  39. Yamamoto T, Ohtori S, Chiba T (2000) Effects of pre-emptively administered nociceptin on the development of thermal hyperalgesia induced by two models of experimental mononeuropathy in the rat. Brain Res 871:192–200

    Google Scholar 

  40. Yu LC, Lu JT, Huang YH et al. (2002) Involvement of endogenous opioid systems in nociceptin-induced spinal antinociception in rats. Brain Res 945:88–96

    Google Scholar 

  41. Zeilhofer HU, Calo G (2003) Nociceptin/orphanin FQ and its receptor—potential targets for pain therapy. J Pharmacol Exp Ther 306:423–429

    Google Scholar 

Download references

Danksagung

Die Untersuchung wurde durch den NIH grant AR 45570 (P. Pierce Palmer) finanziert. T. Meuser und C. Pietruck wurden durch das Köln Fortune Programm der Medizinischen Fakultät der Universität zu Köln und S. Grond durch das Wilhelm-Roux-Programm FKZ 6/06 der Martin-Luther-Universität Halle-Wittenberg unterstützt.

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Grond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabriel, A., Pietruck, C., Meuser, T. et al. Regulation der spinalen Expression von Nociceptin unter neuropathischen Schmerzen. Anaesthesist 53, 621–628 (2004). https://doi.org/10.1007/s00101-004-0688-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-004-0688-y

Schlüsselwörter

Keywords

Navigation