Skip to main content
Log in

Erhaltene spontane Atemtätigkeit während partieller Flüssigkeitsbeatmung

Ergebnisse tierexperimenteller Studien und deren potentielle klinische Relevanz

  • Intensivmedizin
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Eine kontrollierte mechanische Beatmung („controlled mechanical ventilation“, CMV) bei schwerem Lungenversagen ist häufig mit beeinträchtigter Hämodynamik assoziiert. Diese Nebenwirkung ist bei Mischformen von Beatmung und Spontanatmung weniger zu erwarten. Partielle Flüssigkeitsbeatmung („partial liquid ventilation“, PLV) verbessert den Gasaustausch bei schweren alveolären Lungenerkrankungen. An gesunden Tieren wurde nachgewiesen, dass während PLV durch proportional assisierte Beatmung („proportional assist ventilation“, PAV) unterstützte Spontanatmung möglich ist. Bei Tieren mit schwerem Surfactantmangel und mit Mekoniumaspiration verbessert PLV bei mit PAV unterstützter Spontanatmung die Oxygenierung und die Lungencompliance. Beim Mekoniumaspirationsmodell fanden wir weiterhin eine reduzierte Atemarbeit, eine niedrigere Mortalität und histologisch eine weniger ausgeprägte Lungenschädigung in der PLV-Gruppe. Bei Tieren mit und ohne Surfactantmangel führt unter PLV mit PAV unterstützte Spontanatmung im Vergleich zu CMV und Muskelrelaxierung zu einem höheren Herzzeit- und Schlagvolumen und einem verbesserten Sauerstofftransport. Ein höherer arterieller und venöser pH bei den Tieren mit Surfactantmangel unter Spontanatmung mit PAV deutet auf eine bessere Gewebeperfusion hin. Darüber hinaus konnte bei den Tieren mit Surfactantmangel unter mit PAV unterstützter Spontanatmung im Vergleich zu CMV und Muskelparalyse ein besserer pulmonaler Gasaustausch als unter kontrollierter Beatmung nachgewiesen werden.

Abstract

Controlled mechanical ventilation (CMV) may contribute to impaired hemodynamics in patients with respiratory failure. It is rational to assume that hybrid modalities of mechanical ventilation have fewer hemodynamic side-effects when spontaneous respiratory activity is allowed during the application of positive airway pressure. Partial liquid ventilation (PLV) has been shown to improve gas exchange in subjects with severe alveolar lung disease. We have shown that spontaneous respiratory efforts during proportional assist ventilation (PAV) is possible in experimental animals without lung disease whose lungs are partially filled with perfluorocarbons. In another series of experiments we demonstrated that PLV improves oxygenation and lung compliance in adult rabbits with severe surfactant deficiency, and in rabbits with meconium aspiration. In animals with meconium aspiration mortality, work of breathing and the degree of lung injury, as assessed by histological analysis, were reduced. In another two series of animals with and without surfactant deficiency spontaneous breathing supported by PAV was associated with increased cardiac output, stroke volume and oxygen transport, as compared to CMV after pharmacologically induced muscle paralysis. An increased arterial and venous pH in animals with surfactant deficiency during spontaneous breathing supported by PAV suggests improved tissue perfusion. Furthermore, gas exchange was improved during spontaneous breathing supported by PAV as compared to CMV and muscle paralysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. ARDS Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    PubMed  Google Scholar 

  2. Bae CW, Takahashi A, Chida S, Sasaki M (1998) Morphology and function of pulmonary surfactant inhibited by meconium. Pediatr Res 44:187–191

    CAS  PubMed  Google Scholar 

  3. Bendel-Stenzel EM, Mrozek JD, Bing D, Meyers PA, Connett JE, Mammel MC (1998) Dynamics of spontaneous breathing during patient-triggered partial liquid ventilation. Pediatr Pulmonol 26:319–325

    Article  CAS  PubMed  Google Scholar 

  4. Bendel-Stenzel EM, Bing DR, Meyers PA, Connett JE, Mammel MC (1999) Synchronized gas and partial liquid ventilation in lung-injured animals: improved gas exchange with decreased effort. Pediatr Pulmonol 27:242–250

    Article  CAS  PubMed  Google Scholar 

  5. Bhutani VK, Abbasi S, Sivieri EM (1988) Continuous skeletal muscle paralysis: effect on neonatal pulmonary mechanics. Pediatrics 81:419–422

    CAS  PubMed  Google Scholar 

  6. Brecher GA, Hubay CA (1955) Pulmonary blood flow and venous return during spontaneous respiration. Circ Res 3:210–214

    PubMed  Google Scholar 

  7. Buck ML, Reed MD (1991) Use of nondepolarizing neuromuscular blocking agents in mechanically ventilated patients. Clin Pharm 10:32–48

    CAS  PubMed  Google Scholar 

  8. Cheifetz IM, Craig DM, Quick G et al. (1998) Increasing tidal volumes and pulmonary overdistention adversely affect pulmonary vascular mechanics and cardiac output in a pediatric swine model. Crit Care Med 26:710–716

    CAS  PubMed  Google Scholar 

  9. Cheung PY, Tyebkhan JM, Peliowski A, Ainsworth W, Robertson CMT (1999) Prolonged use of pancuronium bromide and sensorineural hearing loss in childhood survivors of congenital diaphragmatic hernia. J Pediatr 135:233–239

    CAS  PubMed  Google Scholar 

  10. Colton DM, Till GO, Johnson KJ, Dean SB, Bartlett RH, Hirschl RB (1998) Neutrophil accumulation is reduced during partial liquid ventilation. Crit Care Med 26:1716–1724

    Google Scholar 

  11. Doctor A, Ibla JC, Grenier BM et al. (1998) Pulmonary blood flow distribution during partial liquid ventilation. J Appl Physiol 84:1540–1550

    CAS  PubMed  Google Scholar 

  12. Downs JB, Douglas ME, Sanfelippo PM, Stanford, W, Hodges MR (1977) Ventilatory pattern, intrapleural pressure, and cardiac output. Anesth Analg 56:88–96

    CAS  PubMed  Google Scholar 

  13. Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323

    CAS  PubMed  Google Scholar 

  14. Foust III R, Tran NN, Cox C, Miller TF, Greenspan JS, Wolfson MR, Shaffer TH (1996) Liquid assisted ventilation: an alternative ventilatory strategy for acute meconium aspiration injury. Pediatr Pulmonol 21:316–322

    PubMed  Google Scholar 

  15. Franz AR, Mack C, Reichart J, Pohlandt F, Hummler HD (2001) Preserved spontaneous breathing improves cardiac output during partial liquid ventilation. Am J Respir Crit Care Med 164:36–42

    CAS  PubMed  Google Scholar 

  16. Froese AB, Bryan AC (1974) Effects of anesthesia and paralysis on diaphragmatic mechanisms in man. Anesthesiology 41:242–255

    CAS  PubMed  Google Scholar 

  17. Fuhrman BP, Paczan PR, Francisis M de (1991) Perfluorocarbon-associated gas exchange. Crit Care Med 19:712–722

    PubMed  Google Scholar 

  18. Hallman M, Spragg R, Harrell JH, Moser KM, Gluck L (1982) Evidence of lung surfactant abnormality in respiratory failure. J Clin Invest 70:673–683

    CAS  PubMed  Google Scholar 

  19. Hernan LJ, Fuhrman BP, Papo MC et al. (1995) Cardiorespiratory effects of perfluorocarbon-associated gas exchange at reduced oxygen concentrations. Crit Care Med 23: 553–559

    CAS  PubMed  Google Scholar 

  20. Hirschl RB, Grover B, McCracken M, Wolfson MR, Shaffer TH, Bartlett RH (1993) Oxygen consumption and carbon dioxide production during liquid ventilation. J Pediatr Surg 28:513–519

    CAS  PubMed  Google Scholar 

  21. Hirschl RB, Pranikoff T, Gauger P, Schreiner RJ, Dechert R, Bartlett RH (1995) Liquid ventilation in adults, children, and full-term neonates. Lancet 346:1201–1202

    CAS  PubMed  Google Scholar 

  22. Hoffman JIE, Guz A, Charlier AA, Wilcken DEL (1965) Stroke volume in conscious dogs; effect of respiration, posture, and vascular occlusion. J Appl Physiol 20:865–877

    CAS  PubMed  Google Scholar 

  23. Houmes RJM, Verbrugge SJC, Hendrik ER, Lachmann B (1995) Hemodynamic effects of partial liquid ventilation with perfluorocarbon in acute lung injury. Intensive Care Med 21:966–972

    CAS  PubMed  Google Scholar 

  24. Hummler H, Gerhardt T, Gonzalez A, Claure N, Everett R, Bancalari E (1996) Influence of different methods of synchronized mechanical ventilation on ventilation, gas exchange, patient effort, and blood pressure fluctuations in premature infants. Pediatr Pulmonol 22:305–313

    Article  CAS  PubMed  Google Scholar 

  25. Hummler HD, Schulze A, Pohlandt F, Thome U (2000) Dynamics of breathing during partial liquid ventilation in spontaneously breathing rabbits supported by elastic and resistive unloading. Pediatr Res 47:392–397

    CAS  PubMed  Google Scholar 

  26. Hummler HD, Thome U, Schulze A, Schnabel R, Pohlandt F, Franz AR (2001) Spontaneous breathing during partial liquid ventilation in animals with meconium aspiration. Pediatr Res 49:572–580

    CAS  PubMed  Google Scholar 

  27. Kaisers U, Max M, Walter J, Kuhlen R, Pappert D, Falke K, Rossaint R (1997) Partial liquid ventilation with small volumes of FC 3280 increases survival time in experimental ARDS. Eur Respir J 10:1955–1961

    CAS  PubMed  Google Scholar 

  28. Lanteri CJ, Petak F, Gurrin L, Sly PD (1999) Influence of inertance on respiratory mechanics measurements in mechanically ventilated puppies. Pediatr Pulmonol 28:130–138

    Article  CAS  PubMed  Google Scholar 

  29. Leach CL, Fuhrman BP, Morin III FC, Rath MG (1993) Perfluorocarbon-associated gas exchange (partial liquid ventilation) in respiratory distress syndrome: a prospective, randomized, controlled study. Crit Care Med 21:1270–1278

    CAS  PubMed  Google Scholar 

  30. Leach CL, Greenspan JS, Rubenstein SD et al. (1996) Partial liquid ventilation with perflubron in premature infants with severe respiratory distress syndrome. N Engl J Med 335:761–767

    CAS  PubMed  Google Scholar 

  31. Lisby DA, Ballard PL, Fow WW, Wolfson MR, Shaffer TH, Gonzales LW (1997) Enhanced distribution of adenovirus-mediated gene transfer to lung parenchyma by perfluorochemical liquid. Hum Gene Ther 8:919–928

    CAS  PubMed  Google Scholar 

  32. Mates EA, Hildebrandt J, Jackson JC, Tarczy-Hornoch P, Hlastala MP (1997) Shunt and ventilation-perfusion distribution during partial liquid ventilation in healthy piglets. J Appl Physiol 82:933–942

    CAS  PubMed  Google Scholar 

  33. Mates van Lobensels E, Anderson JC, Hildebrandt J, Hlastala MP (1999) Modeling diffusion limitation of gas exchange in lungs containing perfluorocarbon. J Appl Physiol 86:273–284

    PubMed  Google Scholar 

  34. Miller J, Law AB, Parker RA, Sundell H, Silberberg AR, Cotton RB (1994) Effects of morphine and pancuronium on lung volume and oxygenation in premature infants with hyaline membrane disease. J Pediatr 125:97–103

    CAS  PubMed  Google Scholar 

  35. Nesti FD, Fuhrman BP, Steinhorn DM et al. (1994) Perfluorocarbon-associated gas exchange in gastric aspiration. Crit Care Med 22:1445–1452

    CAS  PubMed  Google Scholar 

  36. Parent AC, Overbeck MC, Hirschl RB (1997) Oxygen dynamics during partial liquid ventilation in a sheep model of severe respiratory failure. Surgery 121:320–327

    CAS  PubMed  Google Scholar 

  37. Peters J, Fraser C, Stuart RS, Baumgartner W, Robotham JL (1989) Negative intrathoracic pressure decreases independently left ventricular filling and emptying. Am J Physiol 257:H120–131

    CAS  PubMed  Google Scholar 

  38. Pohlandt F, Saule H, Schröder H et al. (1992) Decreased incidence of extra-alveolar air leakage or death prior to air leakage in high versus low rate positive pressure ventilation: results of a randomised seven-centre trial in preterm infants. Eur J Pediatr 151:904–909

    CAS  PubMed  Google Scholar 

  39. Pouleur H, Covell JW, Ross Jr J (1980) Effects of nitroprusside on venous return and central blood volume in the absence and presence of heart failure. Circulation 61:328–337

    CAS  PubMed  Google Scholar 

  40. Putensen C, Räsänen J, Lopez FA (1994) Ventilation-perfusion distributions during mechanical ventilation with superimposed spontaneous breathing in canine lung injury. Am J Respir Crit Care Med 150:101–108

    CAS  PubMed  Google Scholar 

  41. Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J (1999) Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 159:1241–1248

    CAS  PubMed  Google Scholar 

  42. Robotham JL, Mitzner W (1979) A model of the effects of respiration on left ventricular performance. J Appl Physiol 46:411–418

    CAS  PubMed  Google Scholar 

  43. Robotham JL, Cherry D, Mitzner W, Rabson JL, Wixfeld W, Bromberger-Barnea B (1983) A re-evaluation of the hemodynamic consequences of intermittent positive pressure ventilation. Crit Care Med 11:783–793

    Google Scholar 

  44. Santamore WP, Heckman JL, Bove AA (1984) Right and left ventricular pressure-volume response to respiratory maneuvers. J Appl Physiol 57:1520–1527

    CAS  PubMed  Google Scholar 

  45. Schaller P, Schulze A (1991) A ventilator generating a positive or negative internal compliance. Upsala J Med Sci 96:219–234

    CAS  PubMed  Google Scholar 

  46. Schulze A, Bancalari E (2001) Proportional assist ventilation in infants. Clin Perinatol 28:561–578

    CAS  PubMed  Google Scholar 

  47. Schulze A, Schaller P, Toepfer A, Kirpalani H (1993) Resistive and elastic unloading to assist spontaneous breathing does not change functional residual capacity. Pediatr Pulmonol 16:170–176

    CAS  PubMed  Google Scholar 

  48. Schulze A, Gerhardt T, Musante G et al. (1999) Proportional assist ventilation in low birth weight infants with acute respiratory disease: a comparison to assist/control and conventional mechanical ventilation. J Pediatr 135:339–344

    CAS  PubMed  Google Scholar 

  49. Segredo V, Caldwell JE, Matthay MA, Sharma ML, Gruenke LD, Miller RD (1992) Persistent paralysis in critically ill patients after long-term administration of vecuronium. N Engl J Med 327:524–528

    Google Scholar 

  50. Steinhorn DM, Papo MC, Rotta AT, Aljada A, Fuhrman BP, Dandona P (1999) Liquid ventilation attenuates pulmonary oxidative damage. J Crit Care 14:20–28

    CAS  PubMed  Google Scholar 

  51. Tarczy-Hornoch P, Hildebrandt J, Standaert TA, Jackson JC (1998) Surfactant replacement increases compliance in premature lamb lungs during partial liquid ventilation. J Appl Physiol 84:1316–1322

    Article  CAS  PubMed  Google Scholar 

  52. Thome UH, Schulze A, Schnabel R, Franz AR, Pohlandt F, Hummler HD (2001) Partial liquid ventilation in severely surfactant-depleted, spontaneously breathing rabbits supported by proportional assist ventilation. Crit Care Med 29:1175–1180

    CAS  PubMed  Google Scholar 

  53. Tütüncü A, Faithful N, Lachmann B (1993) Comparison of ventilatory support with intratracheal perfluorocarbon administration and conventional mechanical ventilation in animals with acute respiratory failure. Am Rev Respir Dis 148: 785–792

    PubMed  Google Scholar 

  54. Tütüncü AS, Houmes RJ, Bos JA, Wollmer P, Lachmann B (1996) Evaluation of lung function after intratracheal perfluorocarbon administration in healthy animals. Crit Care Med 24:274–279

    PubMed  Google Scholar 

  55. Varani J, Hirschl RB, Dame M, Johnson K (1996) Perfluorocarbon protects lung epithelial cells from neutrophil-mediated injury in an in vitro model of liquid ventilation therapy. Shock 6:339–344

    CAS  PubMed  Google Scholar 

  56. Wall MA (1980) Infant endotracheal tube resistance: effects of changing length, diameter, and gas density. Crit Care Med 8:38–40

    Google Scholar 

  57. Whittenberger JL, McGregor M, Berglund, E, Borst HG (1960) Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol 15:878–882

    CAS  Google Scholar 

  58. Younes M (1992) Proportional assist ventilation, a new approach to ventilatory support. Theory. Am Rev Respir Dis 145:114–120

    CAS  PubMed  Google Scholar 

  59. Younes M, Puddy A, Roberts D et al. (1992) Proportional assist ventilation. Results of an initial clinical trial. Am Rev Respir Dis 145:121–129

    CAS  PubMed  Google Scholar 

  60. Zelinka MA, Wolfson MR, Calligaro I, Rubenstein SD, Greenspan JS, Shaffer TH (1997) A comparison of intratracheal and intravenous administration of gentamicin during liquid ventilation. Eur J Pediatr 156:401–404

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren möchten sich besonders bei Dr. Axel Franz, Dr. Ulrich Thome, Dr. Julia Peschke und Dr. Christina Mack für die unermüdliche Mitarbeit im Tierlabor sowie bei Nelson Claure, University of Miami, U.S.A., für seine logistische Unterstützung bei der Datenauswertung bedanken. Weiterer Dank gilt den Mitarbeitern des Tierforschungszentrums Ulm, ohne deren Unterstützung diese Arbeiten nicht möglich gewesen wären.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Hummler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hummler, H.D., Pohlandt, F. & Schulze, A. Erhaltene spontane Atemtätigkeit während partieller Flüssigkeitsbeatmung. Anaesthesist 52, 1158–1170 (2003). https://doi.org/10.1007/s00101-003-0582-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-003-0582-z

Schlüsselwörter

Keywords

Navigation