Skip to main content

Advertisement

Log in

Hemorrhagic shock and tissue injury provoke distinct components of trauma-induced coagulopathy in a swine model

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Introduction

Tissue injury (TI) and hemorrhagic shock (HS) are the major contributors to trauma-induced coagulopathy (TIC). However, the individual contributions of these insults are difficult to discern clinically because they typically coexist. TI has been reported to release procoagulants, while HS has been associated with bleeding. We developed a large animal model to isolate TI and HS and characterize their individual mechanistic pathways. We hypothesized that while TI and HS are both drivers of TIC, they provoke different pathways; specifically, TI reduces time to clotting, whereas, HS decreases clot strength stimulates hyperfibrinolysis.

Methods

After induction of general anesthesia, 50 kg male, Yorkshire swine underwent isolated TI (bilateral muscle cutdown of quadriceps, bilateral femur fractures) or isolated HS (controlled bleeding to a base excess target of − 5 mmol/l) and observed for 240 min. Thrombelastography (TEG), calcium levels, thrombin activatable fibrinolysis inhibitor (TAFI), protein C, plasminogen activator inhibitor 1 (PAI-1), and plasminogen activator inhibitor 1/tissue-type plasminogen activator complex (PAI-1-tPA) were analyzed at pre-selected timepoints. Linear mixed models for repeated measures were used to compare results throughout the model.

Results

TI resulted in elevated histone release which peaked at 120 min (p = 0.02), and this was associated with reduced time to clot formation (R time) by 240 min (p = 0.006). HS decreased clot strength at time 30 min (p = 0.003), with a significant decline in calcium (p = 0.001). At study completion, HS animals had elevated PAI-1 (p = 0.01) and PAI-1-tPA (p = 0.04), showing a trend toward hyperfibrinolysis, while TI animals had suppressed fibrinolysis. Protein C, TAFI and skeletal myosin were not different among the groups.

Conclusion

Isolated injury in animal models can help elucidate the mechanistic pathways leading to TIC. Our results suggest that isolated TI leads to early histone release and a hypercoagulable state, with suppressed fibrinolysis. In contrast, HS promotes poor clot strength and hyperfibrinolysis resulting in hypocoagulability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, Group NCRRGW. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160(7):1577–9. https://doi.org/10.1111/j.1476-5381.2010.00872.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization. Fact Sheets: Injuries and violence. 2021. https://www.who.int/news-room/fact-sheets/detail/injuries-and-violence#:~:text=Injuries%20%E2%80%93%20both%20unintentional%20and%20violence,nearly%208%25%20of%20all%20deaths. Accessed 11 Jun 2022.

  3. Kalkwarf KJ, Drake SA, Yang Y, et al. Bleeding to death in a big city: An analysis of all trauma deaths from hemorrhage in a metropolitan area during 1 year. J Trauma Acute Care Surg. 2020;89(4):716–22. https://doi.org/10.1097/TA.0000000000002833.

    Article  PubMed  Google Scholar 

  4. Moore HB, Moore EE, Chapman MP, et al. Plasma-first resuscitation to treat haemorrhagic shock during emergency ground transportation in an urban area: a randomised trial. Lancet. 2018;392(10144):283–91. https://doi.org/10.1016/S0140-6736(18)31553-8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54(6):1127–30. https://doi.org/10.1097/01.TA.0000069184.82147.06.

    Article  PubMed  Google Scholar 

  6. Cosgriff N, Moore EE, Sauaia A, Kenny-Moynihan M, Burch JM, Galloway B. Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidoses revisited. J Trauma. 1997;42(5):857–61. https://doi.org/10.1097/00005373-199705000-00016 (Discussion 861-2).

    Article  CAS  PubMed  Google Scholar 

  7. Moore EE, Moore HB, Kornblith LZ, et al. Trauma-induced coagulopathy. Nat Rev Dis Primers. 2021;7(1):30. https://doi.org/10.1038/s41572-021-00264-3.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frith D, Goslings JC, Gaarder C, et al. Definition and drivers of acute traumatic coagulopathy: clinical and experimental investigations. J Thromb Haemost. 2010;8(9):1919–25. https://doi.org/10.1111/j.1538-7836.2010.03945.x.

    Article  CAS  PubMed  Google Scholar 

  9. Kutcher ME, Howard BM, Sperry JL, et al. Evolving beyond the vicious triad: differential mediation of traumatic coagulopathy by injury, shock, and resuscitation. J Trauma Acute Care Surg. 2015;78(3):516–23. https://doi.org/10.1097/TA.0000000000000545.

    Article  CAS  PubMed  Google Scholar 

  10. Martini WZ, Pusateri AE, Uscilowicz JM, Delgado AV, Holcomb JB. Independent contributions of hypothermia and acidosis to coagulopathy in swine. J Trauma. 2005;58(5):1002–9. https://doi.org/10.1097/01.ta.0000156246.53383.9f (Discussion 1009-10).

    Article  PubMed  Google Scholar 

  11. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011;254(2):194–200. https://doi.org/10.1097/SLA.0b013e318226113d.

    Article  PubMed  Google Scholar 

  12. Johansson PI, Windelov NA, Rasmussen LS, Sorensen AM, Ostrowski SR. Blood levels of histone-complexed DNA fragments are associated with coagulopathy, inflammation and endothelial damage early after trauma. J Emerg Trauma Shock. 2013;6(3):171–5. https://doi.org/10.4103/0974-2700.115327.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moore HB, Moore EE, Gonzalez E, et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77(6):811–7. https://doi.org/10.1097/TA.0000000000000341 (Discussion 817).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moore HB, Moore EE. Temporal Changes in Fibrinolysis following Injury. Semin Thromb Hemost. 2020;46(2):189–98. https://doi.org/10.1055/s-0039-1701016.

    Article  PubMed  Google Scholar 

  15. Moore HB, Moore EE, Huebner BR, et al. Fibrinolysis shutdown is associated with a fivefold increase in mortality in trauma patients lacking hypersensitivity to tissue plasminogen activator. J Trauma Acute Care Surg. 2017;83(6):1014–22. https://doi.org/10.1097/TA.0000000000001718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davenport RA, Guerreiro M, Frith D, et al. Activated protein C drives the hyperfibrinolysis of acute traumatic coagulopathy. Anesthesiology. 2017;126(1):115–27. https://doi.org/10.1097/ALN.0000000000001428.

    Article  CAS  PubMed  Google Scholar 

  17. Moore HB, Moore EE, Lawson PJ, et al. Fibrinolysis shutdown phenotype masks changes in rodent coagulation in tissue injury versus hemorrhagic shock. Surgery. 2015;158(2):386–92. https://doi.org/10.1016/j.surg.2015.04.008.

    Article  PubMed  Google Scholar 

  18. Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 2013;110(9):3507–12. https://doi.org/10.1073/pnas.1222878110.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cralley AL, Moore EE, Kissau D, Coleman JR, Vigneshwa N, Debot M, Schaid TR Jr, Moore HB, Cohen MJ, Hansen K, Silliman CC. A combat casualty relevant dismounted complex blast injury model in swine. J Trauma Acute Care Surg. 2022;93(2S Suppl 1):S110-S118. https://doi.org/10.1097/TA.0000000000003674

    Article  PubMed  Google Scholar 

  20. Stettler GR, Moore EE, Moore HB, et al. Thrombelastography indicates limitations of animal models of trauma-induced coagulopathy. J Surg Res. 2017;217:207–12. https://doi.org/10.1016/j.jss.2017.05.027.

    Article  PubMed  PubMed Central  Google Scholar 

  21. D’Alessandro A, Dzieciatkowska M, Hill RC, Hansen KC. Supernatant protein biomarkers of red blood cell storage hemolysis as determined through an absolute quantification proteomics technology. Transfusion. 2016;56(6):1329–39. https://doi.org/10.1111/trf.13483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dzieciatkowska M, D’Alessandro A, Hill RC, Hansen KC. Plasma QconCATs reveal a gender-specific proteomic signature in apheresis platelet plasma supernatants. J Proteomics. 2015;120:1–6. https://doi.org/10.1016/j.jprot.2015.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018;46(5):2699. https://doi.org/10.1093/nar/gky092.

    Article  CAS  PubMed  Google Scholar 

  24. Coleman JR, Deguchi H, Deguchi TK, Cohen MJ, Moore EE, Griffin JH. Full-length plasma skeletal muscle myosin isoform deficiency is associated with coagulopathy in acutely injured patients. J Thromb Haemost. 2022. https://doi.org/10.1111/jth.15695.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chapman MP, Moore EE, Ramos CR, et al. Fibrinolysis greater than 3% is the critical value for initiation of antifibrinolytic therapy. J Trauma Acute Care Surg. 2013;75(6):961–7. https://doi.org/10.1097/TA.0b013e3182aa9c9f (Discussion 967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Esmon CT. The protein C pathway. Chest. 2003;124(3 Suppl):26S-32S. https://doi.org/10.1378/chest.124.3_suppl.26s.

    Article  CAS  PubMed  Google Scholar 

  27. de Fouw NJ, de Jong YF, Haverkate F, Bertina RM. Activated protein C increases fibrin clot lysis by neutralization of plasminogen activator inhibitor–no evidence for a cofactor role of protein S. Thromb Haemost. 1988;60(2):328–33.

    Article  PubMed  Google Scholar 

  28. Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245(5):812–8. https://doi.org/10.1097/01.sla.0000256862.79374.31.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chesebro BB, Rahn P, Carles M, et al. Increase in activated protein C mediates acute traumatic coagulopathy in mice. Shock. 2009;32(6):659–65. https://doi.org/10.1097/SHK.0b013e3181a5a632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moore HB, Tessmer MT, Moore EE, et al. Forgot calcium? Admission ionized-calcium in two civilian randomized controlled trials of prehospital plasma for traumatic hemorrhagic shock. J Trauma Acute Care Surg. 2020;88(5):588–96. https://doi.org/10.1097/TA.0000000000002614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matthay ZA, Fields AT, Nunez-Garcia B, et al. Dynamic effects of calcium on in vivo and ex vivo platelet behavior after trauma. J Trauma Acute Care Surg. 2020;89(5):871–9. https://doi.org/10.1097/TA.0000000000002820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh S, Dodt J, Volkers P, et al. Structure functional insights into calcium binding during the activation of coagulation factor XIII A. Sci Rep. 2019;9(1):11324. https://doi.org/10.1038/s41598-019-47815-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brannstrom A, von Oelreich E, Degerstedt LE, et al. The swine as a vehicle for research in trauma-induced coagulopathy: Introducing principal component analysis for viscoelastic coagulation tests. J Trauma Acute Care Surg. 2021;90(2):360–8. https://doi.org/10.1097/TA.0000000000002997.

    Article  PubMed  Google Scholar 

  34. Schochl H, Solomon C, Schulz A, et al. Thromboelastometry (TEM) findings in disseminated intravascular coagulation in a pig model of endotoxinemia. Mol Med. 2011;17(3–4):266–72. https://doi.org/10.2119/molmed.2010.00159.

    Article  CAS  PubMed  Google Scholar 

  35. Saetre T, Lindgaard AK, Lyberg T. Systemic activation of coagulation and fibrynolysis in a porcine model of serogroup A streptococcal shock. Blood Coagul Fibrinolysis. 2000;11(5):433–8. https://doi.org/10.1097/00001721-200007000-00006.

    Article  CAS  PubMed  Google Scholar 

  36. Chandler WL, Trimble SL, Loo SC, Mornin D. Effect of PAI-1 levels on the molar concentrations of active tissue plasminogen activator (t-PA) and t-PA/PAI-1 complex in plasma. Blood. 1990;76(5):930–7.

    Article  CAS  PubMed  Google Scholar 

  37. Bjorquist P, Brohlin M, Ehnebom J, et al. Plasminogen activator inhibitor type-1 interacts exclusively with the proteinase domain of tissue plasminogen activator. Biochim Biophys Acta. 1994;1209(2):191–202. https://doi.org/10.1016/0167-4838(94)90184-8.

    Article  CAS  PubMed  Google Scholar 

  38. Cardenas JC, Matijevic N, Baer LA, Holcomb JB, Cotton BA, Wade CE. Elevated tissue plasminogen activator and reduced plasminogen activator inhibitor promote hyperfibrinolysis in trauma patients. Shock. 2014;41(6):514–21. https://doi.org/10.1097/SHK.0000000000000161.

    Article  CAS  PubMed  Google Scholar 

  39. Chapman MP, Moore EE, Moore HB, et al. Overwhelming tPA release, not PAI-1 degradation, is responsible for hyperfibrinolysis in severely injured trauma patients. J Trauma Acute Care Surg. 2016;80(1):16–23. https://doi.org/10.1097/TA.0000000000000885 (Discussion 23-5).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chandler WL, Alessi MC, Aillaud MF, Henderson P, Vague P, Juhan-Vague I. Clearance of tissue plasminogen activator (TPA) and TPA/plasminogen activator inhibitor type 1 (PAI-1) complex: relationship to elevated TPA antigen in patients with high PAI-1 activity levels. Circulation. 1997;96(3):761–8. https://doi.org/10.1161/01.cir.96.3.761.

    Article  CAS  PubMed  Google Scholar 

  41. Coleman JR, Moore EE, Zilberman-Rudenko J, et al. Cardiac and skeletal muscle myosin exert procoagulant effects. Shock. 2019;52(5):554–5. https://doi.org/10.1097/SHK.0000000000001426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deguchi H, Sinha RK, Marchese P, et al. Prothrombotic skeletal muscle myosin directly enhances prothrombin activation by binding factors Xa and Va. Blood. 2016;128(14):1870–8. https://doi.org/10.1182/blood-2016-03-707679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vlasakova K, Lane P, Michna L, Muniappa N, Sistare FD, Glaab WE. Response of novel skeletal muscle biomarkers in dogs to drug-induced skeletal muscle injury or sustained endurance exercise. Toxicol Sci. 2017;156(2):422–7. https://doi.org/10.1093/toxsci/kfw262.

    Article  CAS  PubMed  Google Scholar 

  44. Burch PM, Greg Hall D, Walker EG, et al. Evaluation of the relative performance of drug-induced skeletal muscle injury biomarkers in rats. Toxicol Sci. 2016;150(1):247–56. https://doi.org/10.1093/toxsci/kfv328.

    Article  CAS  PubMed  Google Scholar 

  45. Guerrero M, Guiu-Comadevall M, Cadefau JA, et al. Fast and slow myosins as markers of muscle injury. Br J Sports Med. 2008;42(7):581–4. https://doi.org/10.1136/bjsm.2007.037945 (Discussion 584).

    Article  CAS  PubMed  Google Scholar 

  46. Kutcher ME, Xu J, Vilardi RF, Ho C, Esmon CT, Cohen MJ. Extracellular histone release in response to traumatic injury: implications for a compensatory role of activated protein C. J Trauma Acute Care Surg. 2012;73(6):1389–94. https://doi.org/10.1097/TA.0b013e318270d595.

    Article  CAS  PubMed  Google Scholar 

  47. Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost. 2011;9(9):1795–803. https://doi.org/10.1111/j.1538-7836.2011.04422.x.

    Article  CAS  PubMed  Google Scholar 

  48. Zeerleder S, Zwart B, Wuillemin WA, et al. Elevated nucleosome levels in systemic inflammation and sepsis. Crit Care Med. 2003;31(7):1947–51. https://doi.org/10.1097/01.CCM.0000074719.40109.95.

    Article  CAS  PubMed  Google Scholar 

  49. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.

    Article  CAS  PubMed  Google Scholar 

  50. Xu J, Zhang X, Pelayo R, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15(11):1318–21. https://doi.org/10.1038/nm.2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kleine TJ, Lewis PN, Lewis SA. Histone-induced damage of a mammalian epithelium: the role of protein and membrane structure. Am J Physiol. 1997;273(6):C1925–36. https://doi.org/10.1152/ajpcell.1997.273.6.C1925.

    Article  CAS  PubMed  Google Scholar 

  52. Kleine TJ, Gladfelter A, Lewis PN, Lewis SA. Histone-induced damage of a mammalian epithelium: the conductive effect. Am J Physiol. 1995;268(5 Pt 1):C1114–25. https://doi.org/10.1152/ajpcell.1995.268.5.C1114.

    Article  CAS  PubMed  Google Scholar 

  53. Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol. 2011;187(5):2626–31. https://doi.org/10.4049/jimmunol.1003930.

    Article  CAS  PubMed  Google Scholar 

  54. Parr MJ, Bouillon B, Brohi K, et al. Traumatic coagulopathy: where are the good experimental models? J Trauma. 2008;65(4):766–71. https://doi.org/10.1097/TA.0b013e31818606d2.

    Article  PubMed  Google Scholar 

  55. Ask A, Eltringham-Smith L, Bhakta V, Donkor DA, Pryzdial ELG, Sheffield WP. Spotlight on animal models of acute traumatic coagulopathy: an update. Transfus Apher Sci. 2022;61(2): 103412. https://doi.org/10.1016/j.transci.2022.103412.

    Article  PubMed  Google Scholar 

  56. Reynolds PS, Fisher BJ, McCarter J, et al. Interventional vitamin C: a strategy for attenuation of coagulopathy and inflammation in a swine multiple injuries model. J Trauma Acute Care Surg. 2018;85(1S Suppl 2):S57–67. https://doi.org/10.1097/TA.0000000000001844.

    Article  CAS  PubMed  Google Scholar 

  57. Martini WZ, Rodriguez CM, Cap AP, Dubick MA. Efficacy of resuscitation with fibrinogen concentrate and platelets in traumatic hemorrhage swine model. J Trauma Acute Care Surg. 2020;89(2S Suppl 2):S137–45. https://doi.org/10.1097/TA.0000000000002736.

    Article  CAS  PubMed  Google Scholar 

  58. Spronk HM, Braunschweig T, Rossaint R, et al. Recombinant factor VIIa reduces bleeding after blunt liver injury in a pig model of dilutional coagulopathy under severe hypothermia. PLoS One. 2015;10(6): e0113979. https://doi.org/10.1371/journal.pone.0113979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hansson KM, Johansson KJ, Wingren C, Fries D, Nelander K, Lovgren A. Recombinant human prothrombin reduced blood loss in a porcine model of dilutional coagulopathy with uncontrolled bleeding. Blood Coagul Fibrinolysis. 2017;28(3):244–53. https://doi.org/10.1097/MBC.0000000000000590.

    Article  CAS  PubMed  Google Scholar 

  60. Kutcher ME, Kornblith LZ, Narayan R, et al. A paradigm shift in trauma resuscitation: evaluation of evolving massive transfusion practices. JAMA Surg. 2013;148(9):834–40. https://doi.org/10.1001/jamasurg.2013.2911.

    Article  PubMed  Google Scholar 

Download references

Funding

This research is funded in part by the Trans-Agency Consortium for Trauma-Induced Coagulopathy (TACTIC) contract number UM1-HL120877. Research support is also provided by the National Institute of General Medical Sciences of the National Institutes of Health (T32 GM008315). The current major funding source is an RM1 grant (1RM1GM131968-01). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis L. Cralley.

Ethics declarations

Conflict of interest

E.E.M. has patents pending related to coagulation and fibrinolysis diagnostics and therapeutic fibrinolytics and is a cofounder with stock options in ThromboTherepeutics. E.E.M. has received grant support from Haemonetics, Inc., Stago, Hemosonics, Instrumentation Laboratories, Inc, and Diapharma outside the submitted work.

Ethical approval

This animal study was conducted in compliance with the Animal Welfare Act, implementing Animal Welfare Regulations, and the principles of the Guide for the Care and Use of Laboratory Animals, National Research Council. Results are reported in accordance with the ARRIVE guidelines [1]. The University of Colorado Institutional Animal Care and Use Committee approved this animal study under protocol #0323, and the research was conducted in a fully accredited Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC) facility.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cralley, A.L., Moore, E.E., Coleman, J.R. et al. Hemorrhagic shock and tissue injury provoke distinct components of trauma-induced coagulopathy in a swine model. Eur J Trauma Emerg Surg 49, 1079–1089 (2023). https://doi.org/10.1007/s00068-022-02148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-022-02148-x

Keywords

Navigation