Skip to main content

The role of fibrinogen in traumatic brain injury: from molecular pathological mechanisms to clinical management

Abstract

Fibrinogen is the substrate of plasma coagulation. It plays an important role in the formation of reticular network, which is crucial to the strength and stability of blood clots. In addition to directly participating in coagulation, fibrinogen also participates in the destruction of blood–brain barrier and neuroinflammation. This article reviews the pathophysiological changes of fibrinogen after traumatic brain injury. Considerable efforts have been made to understand the mechanisms by which fibrinogen damages the central nervous system. Combined with the latest research hotspots, potentially promising treatment strategies at the molecular level were discussed. We believe that understanding the role of fibrinogen-mediated damage in nerve and blood–brain barrier function will enable timely intervention in patients with nerve damage, and guide the development of novel targeted therapeutics.

This is a preview of subscription content, access via your institution.

Fig. 1

Availability of data and materials

Not applicable.

Abbreviations

TBI:

Traumatic brain injury

FIB:

Fibrinogen

BBB:

Blood–brain barrier

BMP:

Bone morphogenetic protein

OPCs:

Oligodendrocyte precursor cells

OLs:

Oligodendrocytes cells

DMH1:

Dorsomorphin homolog 1

ACVR1:

Activin A receptor type I

TGF-β:

Transforming growth factor-β protein

Sdc1:

Surface syndecan-1

ROS:

Reactive oxygen species. FFP, fresh frozen plasma

PCC:

Prothrombin complex concentrate

TXA:

Tranexamic acid

TIC:

Traumatic-induced coagulopathy

FPA:

Fibrinopeptide A

DIC:

Disseminated intravascular coagulation

ICP:

Intracranial pressure

GOS:

Glasgow Outcome Scale

GCS:

Glasgow Coma Scale

References

  1. Yurina LV, Vasilyeva AD, Vasserman LA, Podoplelova NA, Panteleev MA, Rosenfeld MA. Effect of hypochlorite- and peroxide-induced oxidation of fibrinogen on the fibrin structure. Dokl Biochem Biophys. 2021;499(1):242–6.

    CAS  PubMed  Article  Google Scholar 

  2. Litvinov RI, Pieters M, de Lange-Loots Z, Weisel JW. Fibrinogen and fibrin. Subcell Biochem. 2021;96:471–501.

    CAS  PubMed  Article  Google Scholar 

  3. Gligorijevic N, Zamorova Krizakova M, Penezic A, Katrlik J, Nedic O. Structural and functional changes of fibrinogen due to aging. Int J Biol Macromol. 2018;108:1028–34.

    CAS  PubMed  Article  Google Scholar 

  4. Brown AC, Barker TH. Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater. 2014;10(4):1502–14.

    CAS  PubMed  Article  Google Scholar 

  5. Martini WZ, Holcomb JB. Acidosis and coagulopathy: the differential effects on fibrinogen synthesis and breakdown in pigs. Ann Surg. 2007;246(5):831–5.

    PubMed  Article  Google Scholar 

  6. Raza I, Davenport R, Rourke C, Platton S, Manson J, Spoors C, Khan S, De’Ath HD, Allard S, Hart DP, et al. The incidence and magnitude of fibrinolytic activation in trauma patients. J Thromb Haemost. 2013;11(2):307–14.

    CAS  PubMed  Article  Google Scholar 

  7. Zhang J, He M, Song Y, Xu J. Prognostic role of D-dimer level upon admission in patients with traumatic brain injury. Medicine (Baltimore). 2018;97(31): e11774.

    CAS  Article  Google Scholar 

  8. Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3(8):1894–904.

    CAS  PubMed  Article  Google Scholar 

  9. Danes AF, Cuenca LG, Bueno SR, Mendarte Barrenechea L, Ronsano JB. Efficacy and tolerability of human fibrinogen concentrate administration to patients with acquired fibrinogen deficiency and active or in high-risk severe bleeding. Vox Sang. 2008;94(3):221–6.

    CAS  PubMed  Article  Google Scholar 

  10. Franchini M, Lippi G. Fibrinogen replacement therapy: a critical review of the literature. Blood Transfus. 2012;10(1):23–7.

    PubMed  PubMed Central  Google Scholar 

  11. Rahe-Meyer N, Sorensen B. Fibrinogen concentrate for management of bleeding. J Thromb Haemost. 2011;9(1):1–5.

    CAS  PubMed  Article  Google Scholar 

  12. Bentzer P, Grande PO. Isolated Brain Trauma in Cats Triggers Rapid Onset of Hypovolemia. Neurocrit Care. 2017;26(3):450–6.

    PubMed  Article  Google Scholar 

  13. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. High circulating adrenaline levels at admission predict increased mortality after trauma. J Trauma Acute Care Surg. 2012;72(2):428–36.

    CAS  PubMed  Article  Google Scholar 

  14. Ostrowski SR, Henriksen HH, Stensballe J, Gybel-Brask M, Cardenas JC, Baer LA, Cotton BA, Holcomb JB, Wade CE, Johansson PI. Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma: a prospective observational study of 404 severely injured patients. J Trauma Acute Care Surg. 2017;82(2):293–301.

    PubMed  Article  Google Scholar 

  15. Pruss H, Tedeschi A, Thiriot A, Lynch L, Loughhead SM, Stutte S, Mazo IB, Kopp MA, Brommer B, Blex C, et al. Spinal cord injury-induced immunodeficiency is mediated by a sympathetic-neuroendocrine adrenal reflex. Nat Neurosci. 2017;20(11):1549–59.

    CAS  PubMed  Article  Google Scholar 

  16. Lewis SR, Evans DJ, Butler AR, Schofield-Robinson OJ, Alderson P. Hypothermia for traumatic brain injury. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.CD001048.pub5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Quine EJ, Murray L, Trapani T, Cooper DJ. Thromboelastography to assess coagulopathy in traumatic brain injury patients undergoing therapeutic hypothermia. Ther Hypothermia Temp Manag. 2021;11(1):53–7.

    PubMed  Article  Google Scholar 

  18. Ritzel RM, He J, Li Y, Cao T, Khan N, Shim B, Sabirzhanov B, Aubrecht T, Stoica BA, Faden AI, et al. Proton extrusion during oxidative burst in microglia exacerbates pathological acidosis following traumatic brain injury. Glia. 2021;69(3):746–64.

    CAS  PubMed  Article  Google Scholar 

  19. Fair KA, Farrell DH, McCully BH, Rick EA, Dewey EN, Hilliard C, Dean R, Lin A, Hinson H, Barbosa R, et al. Fibrinolytic activation in patients with progressive intracranial hemorrhage after traumatic brain injury. J Neurotrauma. 2021;38(8):960–6.

    PubMed  PubMed Central  Article  Google Scholar 

  20. Davenport RA, Guerreiro M, Frith D, Rourke C, Platton S, Cohen M, Pearse R, Thiemermann C, Brohi K. Activated protein C drives the hyperfibrinolysis of acute traumatic coagulopathy. Anesthesiology. 2017;126(1):115–27.

    CAS  PubMed  Article  Google Scholar 

  21. Johnson VE, Weber MT, Xiao R, Cullen DK, Meaney DF, Stewart W, Smith DH. Mechanical disruption of the blood-brain barrier following experimental concussion. Acta Neuropathol. 2018;135(5):711–26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Sahyouni R, Gutierrez P, Gold E, Robertson RT, Cummings BJ. Effects of concussion on the blood-brain barrier in humans and rodents. J Concussion. 2017;1:205970021668451.

    Article  Google Scholar 

  23. Petersen MA, Ryu JK, Chang KJ, Etxeberria A, Bardehle S, Mendiola AS, Kamau-Devers W, Fancy SPJ, Thor A, Bushong EA, et al. Fibrinogen activates BMP signaling in oligodendrocyte progenitor cells and inhibits remyelination after vascular damage. Neuron. 2017;96(5):1003-1012.e7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Yahn SL, Li J, Goo I, Gao H, Brambilla R, Lee JK. Fibrotic scar after experimental autoimmune encephalomyelitis inhibits oligodendrocyte differentiation. Neurobiol Dis. 2020;134: 104674.

    CAS  PubMed  Article  Google Scholar 

  25. Ryu JK, Petersen MA, Murray SG, Baeten KM, Meyer-Franke A, Chan JP, Vagena E, Bedard C, Machado MR, Rios Coronado PE, et al. Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nat Commun. 2015;6:8164.

    PubMed  Article  Google Scholar 

  26. Davalos D, Ryu JK, Merlini M, Baeten KM, Le Moan N, Petersen MA, Deerinck TJ, Smirnoff DS, Bedard C, Hakozaki H, et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun. 2012;3:1227.

    PubMed  Article  CAS  Google Scholar 

  27. Merlini M, Rafalski VA, Rios Coronado PE, Gill TM, Ellisman M, Muthukumar G, Subramanian KS, Ryu JK, Syme CA, Davalos D, et al. Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer’s disease model. Neuron. 2019;101(6):1099-1108.e6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Davalos D, Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol. 2012;34(1):43–62.

    CAS  PubMed  Article  Google Scholar 

  29. Schachtrup C, Ryu JK, Helmrick MJ, Vagena E, Galanakis DK, Degen JL, Margolis RU, Akassoglou K. Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J Neurosci. 2010;30(17):5843–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Garnacho C, Serrano D, Muro S. A fibrinogen-derived peptide provides intercellular adhesion molecule-1-specific targeting and intraendothelial transport of polymer nanocarriers in human cell cultures and mice. J Pharmacol Exp Ther. 2012;340(3):638–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Golanov EV, Sharpe MA, Regnier-Golanov AS, Del Zoppo GJ, Baskin DS, Britz GW. Fibrinogen chains intrinsic to the brain. Front Neurosci. 2019;13:541.

    PubMed  PubMed Central  Article  Google Scholar 

  32. Wu F, Kozar RA. Fibrinogen protects against barrier dysfunction through maintaining cell surface syndecan-1 in vitro. Shock. 2019;51(6):740–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Guedes AF, Carvalho FA, Domingues MM, Macrae FL, McPherson HR, Santos NC, Ariёns RAS. Sensing adhesion forces between erythrocytes and gamma’ fibrinogen, modulating fibrin clot architecture and function. Nanomedicine. 2018;14(3):909–18.

    CAS  PubMed  Article  Google Scholar 

  34. Appiah D, Heckbert SR, Cushman M, Psaty BM, Folsom AR. Lack of association of plasma gamma prime (gamma’) fibrinogen with incident cardiovascular disease. Thromb Res. 2016;143:50–2.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Siebenlist KR, Mosesson MW, Hernandez I, Bush LA, Di Cera E, Shainoff JR, Di Orio JP, Stojanovic L. Studies on the basis for the properties of fibrin produced from fibrinogen-containing gamma’ chains. Blood. 2005;106(8):2730–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Byrnes JR, Wilson C, Boutelle AM, Brandner CB, Flick MJ, Philippou H, Wolberg AS. The interaction between fibrinogen and zymogen FXIII-A2B2 is mediated by fibrinogen residues gamma390-396 and the FXIII-B subunits. Blood. 2016;128(15):1969–78.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Pieters M, Kotze RC, Jerling JC, Kruger A, Ariens RA. Evidence that fibrinogen gamma’ regulates plasma clot structure and lysis and relationship to cardiovascular risk factors in black Africans. Blood. 2013;121(16):3254–60.

    CAS  PubMed  Article  Google Scholar 

  38. Cantero M, Rojas H, Angles-Cano E, Marchi R. Fibrin gamma/gamma’ influences the secretion of fibrinolytic components and clot structure. BMC Mol Cell Biol. 2019;20(1):47.

    PubMed  PubMed Central  Article  Google Scholar 

  39. Fair K, Farrell D, McCully B, Rick E, Dewey EN, Hilliard C, Dean R, Lin AL, Hinson HE, Barbosa RR, et al. Fibrinolytic activation in patients with progressive intracranial hemorrhage after traumatic brain injury. J Neurotrauma. 2021;38:960–6.

    PubMed  PubMed Central  Article  Google Scholar 

  40. Almskog LM, Hammar U, Wikman A, Ostlund A, Svensson J, Wanecek M, Agren A. A retrospective register study comparing fibrinogen treated trauma patients with an injury severity score matched control group. Scand J Trauma Resusc Emerg Med. 2020;28(1):5.

    PubMed  PubMed Central  Article  Google Scholar 

  41. Theusinger OM, Baulig W, Seifert B, Emmert MY, Spahn DR, Asmis LM. Relative concentrations of haemostatic factors and cytokines in solvent/detergent-treated and fresh-frozen plasma. Br J Anaesth. 2011;106(4):505–11.

    CAS  PubMed  Article  Google Scholar 

  42. Yokobori S, Takayama Y, Kanaya T, Fujiki Y, Igarashi Y, Suzuki G, Naoe Y, Fuse A, Yokota H. A retrospective study of the effect of fibrinogen levels during fresh frozen plasma transfusion in patients with traumatic brain injury. Acta Neurochir (Wien). 2019;161(9):1943–53.

    Article  Google Scholar 

  43. Zhang LM, Li R, Zhao XC, Zhang Q, Luo XL. Increased transfusion of fresh frozen plasma is associated with mortality or worse functional outcomes after severe traumatic brain injury: a retrospective study. World Neurosurg. 2017;104:381–9.

    PubMed  Article  Google Scholar 

  44. Chowdary P, Saayman AG, Paulus U, Findlay GP, Collins PW. Efficacy of standard dose and 30 ml/kg fresh frozen plasma in correcting laboratory parameters of haemostasis in critically ill patients. Br J Haematol. 2004;125(1):69–73.

    PubMed  Article  Google Scholar 

  45. Muller MC, Straat M, Meijers JC, Klinkspoor JH, de Jonge E, Arbous MS, Schultz MJ, Vroom MB, Juffermans NP. Fresh frozen plasma transfusion fails to influence the hemostatic balance in critically ill patients with a coagulopathy. J Thromb Haemost. 2015;13(6):989–97.

    CAS  PubMed  Article  Google Scholar 

  46. Lee SH, Lee SM, Kim CS, Cho HS, Lee JH, Lee CH, Kim E, Sung K, Solomon C, Kang J, et al. Fibrinogen recovery and changes in fibrin-based clot firmness after cryoprecipitate administration in patients undergoing aortic surgery involving deep hypothermic circulatory arrest. Transfusion. 2014;54(5):1379–87.

    CAS  PubMed  Article  Google Scholar 

  47. Sugiyama K, Fujita H, Nishimura S. Effects of in-house cryoprecipitate on transfusion usage and mortality in patients with multiple trauma with severe traumatic brain injury: a retrospective cohort study. Blood Transfus. 2020;18(1):6–12.

    PubMed  PubMed Central  Google Scholar 

  48. Meizoso JP, Moore EE, Pieracci FM, Saberi RA, Ghasabyan A, Chandler J, Namias N, Sauaia A. Role of fibrinogen in trauma-induced coagulopathy. J Am Coll Surg. 2022;234(4):465–73.

    PubMed  Article  Google Scholar 

  49. Collins PW, Solomon C, Sutor K, Crispin D, Hochleitner G, Rizoli S, Schochl H, Schreiber M, Ranucci M. Theoretical modelling of fibrinogen supplementation with therapeutic plasma, cryoprecipitate, or fibrinogen concentrate. Br J Anaesth. 2014;113(4):585–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Winearls J, Wullschleger M, Wake E, Hurn C, Furyk J, Ryan G, Trout M, Walsham J, Holley A, Cohen J, et al. Fibrinogen early in severe trauma study (FEISTY): study protocol for a randomised controlled trial. Trials. 2017;18(1):241.

    PubMed  PubMed Central  Article  Google Scholar 

  51. Nascimento B, Goodnough LT, Levy JH. Cryoprecipitate therapy. Br J Anaesth. 2014;113(6):922–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Schlimp CJ, Voelckel W, Inaba K, Maegele M, Schochl H. Impact of fibrinogen concentrate alone or with prothrombin complex concentrate (+/- fresh frozen plasma) on plasma fibrinogen level and fibrin-based clot strength (FIBTEM) in major trauma: a retrospective study. Scand J Trauma Resusc Emerg Med. 2013;21:74.

    PubMed  PubMed Central  Article  Google Scholar 

  53. Akbari E, Safari S, Hatamabadi H. The effect of fibrinogen concentrate and fresh frozen plasma on the outcome of patients with acute traumatic coagulopathy: a quasi-experimental study. Am J Emerg Med. 2018;36(11):1947–50.

    PubMed  Article  Google Scholar 

  54. Curry N, Foley C, Wong H, Mora A, Curnow E, Zarankaite A, Hodge R, Hopkins V, Deary A, Ray J, et al. Early fibrinogen concentrate therapy for major haemorrhage in trauma (E-FIT 1): results from a UK multi-centre, randomised, double blind, placebo-controlled pilot trial. Crit Care. 2018;22(1):164.

    PubMed  PubMed Central  Article  Google Scholar 

  55. Kozek-Langenecker SA, Afshari A, Albaladejo P, Santullano CA, De Robertis E, Filipescu DC, Fries D, Gorlinger K, Haas T, Imberger G, et al. Management of severe perioperative bleeding: guidelines from the European society of anaesthesiology. Eur J Anaesthesiol. 2013;30(6):270–382.

    PubMed  Article  Google Scholar 

  56. Nardi G, Agostini V, Rondinelli B, Russo E, Bastianini B, Bini G, Bulgarelli S, Cingolani E, Donato A, Gambale G, et al. Trauma-induced coagulopathy: impact of the early coagulation support protocol on blood product consumption, mortality and costs. Crit Care. 2015;19:83.

    PubMed  PubMed Central  Article  Google Scholar 

  57. Itagaki Y, Hayakawa M, Maekawa K, Saito T, Kodate A, Honma Y, Mizugaki A, Yoshida T, Ohyasu T, Katabami K, et al. Early administration of fibrinogen concentrate is associated with improved survival among severe trauma patients: a single-centre propensity score-matched analysis. World J Emerg Surg. 2020;15:7.

    PubMed  PubMed Central  Article  Google Scholar 

  58. Godier A, Greinacher A, Faraoni D, Levy JH, Samama CM. Use of factor concentrates for the management of perioperative bleeding: guidance from the SSC of the ISTH. J Thromb Haemost. 2018;16(1):170–4.

    CAS  PubMed  Article  Google Scholar 

  59. Hannon M, Quail J, Johnson M, Pugliese C, Chen K, Shorter H, Riffenburgh R, Jackson R. Fibrinogen and prothrombin complex concentrate in trauma coagulopathy. J Surg Res. 2015;196(2):368–72.

    CAS  PubMed  Article  Google Scholar 

  60. Lissitchkov T, Madan B, Djambas Khayat C, Zozulya N, Ross C, Karimi M, Kavakli K, De Angulo GR, Almomen A, Schwartz BA, et al. Efficacy and safety of a new human fibrinogen concentrate in patients with congenital fibrinogen deficiency: an interim analysis of a phase III trial. Transfusion. 2018;58(2):413–22.

    CAS  PubMed  Article  Google Scholar 

  61. Lv K, Yuan Q, Fu P, Wu G, Wu X, Du Z, Yu J, Li Z, Hu J. Impact of fibrinogen level on the prognosis of patients with traumatic brain injury: a single-center analysis of 2570 patients. World J Emerg Surg. 2020;15(1):54.

    PubMed  PubMed Central  Article  Google Scholar 

  62. Gomez-Builes JC, Acuna SA, Nascimento B, Madotto F, Rizoli SB. Harmful or physiologic: diagnosing fibrinolysis shutdown in a trauma cohort with rotational thromboelastometry. Anesth Analg. 2018;127(4):840–9.

    PubMed  PubMed Central  Article  Google Scholar 

  63. Hijazi N, Abu Fanne R, Abramovitch R, Yarovoi S, Higazi M, Abdeen S, Basheer M, Maraga E, Cines DB, Higazi AA. Endogenous plasminogen activators mediate progressive intracerebral hemorrhage after traumatic brain injury in mice. Blood. 2015;125(16):2558–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Weng S, Wang W, Wei Q, Lan H, Su J, Xu Y. Effect of tranexamic acid in patients with traumatic brain injury: a systematic review and meta-analysis. World Neurosurg. 2019;123:128–35.

    PubMed  Article  Google Scholar 

  65. Yutthakasemsunt S, Kittiwatanagul W, Piyavechvirat P, Thinkamrop B, Phuenpathom N, Lumbiganon P. Tranexamic acid for patients with traumatic brain injury: a randomized, double-blinded, placebo-controlled trial. BMC Emerg Med. 2013;13:20.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. The CRASH-3 trial collaborators C-t. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019;394(10210):1713–23.

    Article  Google Scholar 

  67. Leeper CM, Kutcher M, Nasr I, McKenna C, Billiar T, Neal M, Sperry J, Gaines BA. Acute traumatic coagulopathy in a critically injured pediatric population: definition, trend over time, and outcomes. J Trauma Acute Care Surg. 2016;81(1):34–41.

    PubMed  Article  Google Scholar 

  68. Asehnoune K, Balogh Z, Citerio G, Cap A, Billiar T, Stocchetti N, Cohen MJ, Pelosi P, Curry N, Gaarder C, et al. The research agenda for trauma critical care. Intensive Care Med. 2017;43(9):1340–51.

    PubMed  Article  Google Scholar 

  69. Folkerson LE, Sloan D, Davis E, Kitagawa RS, Cotton BA, Holcomb JB, Tomasek JS, Wade CE. Coagulopathy as a predictor of mortality after penetrating traumatic brain injury. Am J Emerg Med. 2018;36(1):38–42.

    PubMed  Article  Google Scholar 

  70. Harhangi BS, Kompanje EJ, Leebeek FW, Maas AI. Coagulation disorders after traumatic brain injury. Acta Neurochir (Wien). 2008;150(2):165–75.

    CAS  Article  Google Scholar 

  71. Sikka M, Sodhi R, Kotru M, Singh G. Markers of fibrinolysis in Indian patients with isolated head trauma. Asian J Neurosurg. 2019;14(1):118–21.

    PubMed  PubMed Central  Article  Google Scholar 

  72. Kayahara T, Kikkawa Y, Komine H, Kamide T, Suzuki K, Shibata A, Ikeda S, Ikeda T, Kurita H. Predictors of subacute hematoma expansion requiring surgical evacuation after initial conservative treatment in patients with acute subdural hematoma. Acta Neurochir (Wien). 2020;162(2):357–63.

    Article  Google Scholar 

  73. Juratli TA, Zang B, Litz RJ, Sitoci KH, Aschenbrenner U, Gottschlich B, Daubner D, Schackert G, Sobottka SB. Early hemorrhagic progression of traumatic brain contusions: frequency, correlation with coagulation disorders, and patient outcome: a prospective study. J Neurotrauma. 2014;31(17):1521–7.

    PubMed  Article  Google Scholar 

  74. Podolsky-Gondim GG, Furlanetti LL, Viana DC, Ballestero MFM, de Oliveira RS. The role of coagulopathy on clinical outcome following traumatic brain injury in children: analysis of 66 consecutive cases in a single center institution. Childs Nerv Syst. 2018;34(12):2455–61.

    PubMed  Article  Google Scholar 

  75. Dickson JM, Wang X, St John AE, Lim EB, Stern SA, White NJ. Damage control resuscitation supplemented with vasopressin in a severe polytrauma model with traumatic brain injury and uncontrolled internal hemorrhage. Mil Med. 2018;183(9–10):e460–6.

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Jin Hu and Dr. Xiaochuan Sun for their useful comments during the preparation of the manuscript.

Funding

The present study was funded by National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Contributions

KL and SXP contributed to the concept and design of the study. KL contributed to the critical review of the literature. All authors wrote the manuscript.

Corresponding author

Correspondence to Ke Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Lv, K. The role of fibrinogen in traumatic brain injury: from molecular pathological mechanisms to clinical management. Eur J Trauma Emerg Surg (2022). https://doi.org/10.1007/s00068-022-02084-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00068-022-02084-w

Keywords

  • Traumatic brain injury
  • Fibrinogen
  • Central nervous system
  • Mechanisms
  • Management