Skip to main content

Advertisement

Log in

Open reduction internal fixation of rib fractures: a biomechanical comparison between the RibLoc U Plus® system and anterior plate in rib implants

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Objectives

In this study, we assessed the bending strength of two surgical repairs of rib fracture using RibLoc® U Plus system made by Acute Innovations and the anterior plate by Synthes.

Methods

After a rib fracture was created in seven pairs of cadaveric rib specimens, one side was repaired with the anterior plate and the other side repaired with the RibLoc U Plus® plate. Each of the rib is loaded using a custom device over 360,000 bending cycles to simulate in vivo fatiguing related to respiration. Upon completion of the cyclic loading, the specimens were compressively loaded to failure and the failure bending moment was determined.

Results

The ribs repaired with the RibLoc U Plus® system showed 79% higher failure bending moment than that of the anterior plate, with a p value of 0.033. The ribs repaired with RibLoc U Plus® showed a trend of less stiffness reduction over the 360,000 loading cycles.

Conclusion

The biomechanical study showed that the RibLoc U Plus® system is stronger in the bending moment loading of repaired ribs, possibly due to the U-shape structure supporting both the inner and outer cortices of a repaired rib.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Peek J, Ochen Y, Saillant N, Groenwold RHH, Leenen LPH, Uribe-Leitz T, et al. Traumatic rib fractures: a marker of severe injury. A nationwide study using the national trauma data bank. Trauma Surg Acute Care Open. 2020;5:e000441. https://doi.org/10.1136/tsaco-2020-000441.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dehghan N. Challenges in plate fixation of chest wall injuries. Injury. 2018;49:S39-43. https://doi.org/10.1016/S0020-1383(18)30301-2.

    Article  PubMed  Google Scholar 

  3. Lichte P, Kalverkamp S, Spillner J, Hildebrand F, Kobbe P. Thoraxtrauma aus chirurgischer Sicht. Unfallchirurg. 2018;121:403–12. https://doi.org/10.1007/s00113-018-0494-7.

    Article  PubMed  Google Scholar 

  4. Majercik S, Pieracci FM. Chest wall trauma. Thorac Surg Clin. 2017;27:113–21. https://doi.org/10.1016/j.thorsurg.2017.01.004.

    Article  PubMed  Google Scholar 

  5. Fleishman N, Richardson T, Attard T. The clinical characteristics of fractures in pediatric patients exposed to proton pump inhibitors. J Pediatr Gastroenterol Nutr. 2020;70:815–9. https://doi.org/10.1097/MPG.0000000000002690.

    Article  CAS  PubMed  Google Scholar 

  6. Mello M, Weideman RA, Little BB, Weideman MW, Cryer B, Brown GR. Proton pump inhibitors increase the incidence of bone fractures in hepatitis c patients. Dig Dis Sci. 2012;57:2416–22. https://doi.org/10.1007/s10620-012-2185-5.

    Article  CAS  PubMed  Google Scholar 

  7. Cooper A, Barlow B, DiScala C, String D. Mortality and truncal injury: the pediatric perspective. J Pediatr Surg. 1994;29:33–8. https://doi.org/10.1016/0022-3468(94)90518-5.

    Article  CAS  PubMed  Google Scholar 

  8. Singh R, Taylor DM, D’Souza D, Gorelik A, Page P, Phal P. Injuries significantly associated with thoracic spine fractures: a case-control study. Emerg Med Australas. 2009;21:419–23. https://doi.org/10.1111/j.1742-6723.2009.01209.x.

    Article  PubMed  Google Scholar 

  9. Brasel KJ, Guse CE, Layde P, Weigelt JA. Rib fractures: relationship with pneumonia and mortality*. Crit Care Med. 2006;34:1642–6. https://doi.org/10.1097/01.CCM.0000217926.40975.4B.

    Article  PubMed  Google Scholar 

  10. Bearn P, Patel J, O’Flynn WR. Cervical ribs: a cause of distal and cerebral embolism. Postgrad Med J. 1993;69:65–8. https://doi.org/10.1136/pgmj.69.807.65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wijffels MME, Prins JTH, Polinder S, Blokhuis TJ, De Loos ER, Den Boer RH, et al. Early fixation versus conservative therapy of multiple, simple rib fractures (FixCon): protocol for a multicenter randomized controlled trial. World J Emerg Surg. 2019;14:38. https://doi.org/10.1186/s13017-019-0258-x.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fokin AA, Hus N, Wycech J, Rodriguez E, Puente I. Surgical stabilization of rib fractures: indications, techniques, and pitfalls. JBJS Essent Surg Tech. 2020;10:e0032–e0032. https://doi.org/10.2106/JBJS.ST.19.00032.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Daegling DJ, Warren MW, Hotzman JL, Self CJ. Structural analysis of human rib fracture and implications for forensic interpretation*. J Forensic Sci. 2008. https://doi.org/10.1111/j.1556-4029.2008.00876.x.

    Article  PubMed  Google Scholar 

  14. Talbot BS, Gange CP, Chaturvedi A, Klionsky N, Hobbs SK, Chaturvedi A. Traumatic rib injury: patterns, imaging pitfalls, complications, and treatment—erratum. Radiographics. 2017;37:1004–1004. https://doi.org/10.1148/rg.2017174003.

    Article  PubMed  Google Scholar 

  15. Lin HC, Chou CS, Hsu TC. Stress fractures of the ribs in amateur golf players. Zhonghua Yi Xue Za Zhi Chin Med J Free China Ed. 1994;54:33–7.

    CAS  Google Scholar 

  16. Love JC, Symes SA. Understanding rib fracture patterns: incomplete and buckle fractures. J Forensic Sci. 2004;49:1153–8.

    Article  PubMed  Google Scholar 

  17. Yang K, Lynch M, O’Donnell C. “Buckle” rib fracture: an artifact following cardio-pulmonary resuscitation detected on postmortem CT. Leg Med. 2011;13:233–9. https://doi.org/10.1016/j.legalmed.2011.05.004.

    Article  Google Scholar 

  18. Blackburne WB, Waddell JN, Swain MV, de Alves Sousa RJ, Kieser JA. Biomechanical investigation of impact induced rib fractures of a porcine infant surrogate model. J Mech Behav Biomed Mater. 2016;62:588–98. https://doi.org/10.1016/j.jmbbm.2016.05.025.

    Article  PubMed  Google Scholar 

  19. Griffard J, Daley B, Campbell M, Martins D, Beam Z, Rowe S, et al. Plate of ribs: single institution’s matched comparison of patients managed operatively and non-operatively for rib fractures. Trauma Surg Acute Care Open. 2020;5:e000519. https://doi.org/10.1136/tsaco-2020-000519.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pouzac M, Blanchard N, Canarelli JP. Traumatismes thoraciques de l’enfant. Arch. Pediatrie. 2000;7:67s–72s. https://doi.org/10.1016/S0929-693X(00)88823-5.

    Article  Google Scholar 

  21. Pieracci FM, Leasia K, Bauman Z, Eriksson EA, Lottenberg L, Majercik S, et al. A multicenter, prospective, controlled clinical trial of surgical stabilization of rib fractures in patients with severe, nonflail fracture patterns (chest wall injury society Nonflail). J Trauma Acute Care Surg. 2020;88:249–57. https://doi.org/10.1097/TA.0000000000002559.

    Article  PubMed  Google Scholar 

  22. de Jong MB, Kokke MC, Hietbrink F, Leenen LPH. Surgical management of rib fractures: strategies and literature review. Scand J Surg. 2014;103:120–5. https://doi.org/10.1177/1457496914531928.

    Article  PubMed  Google Scholar 

  23. Saritas A, Guneren G, UzunSaritas P, Kizilkaya SA, Ugis C. The decrease of the duration of stay in the icu with rib fixation in a case of multiple rib fracture. Turk J Anesth Reanim. 2014;42:277–9. https://doi.org/10.5152/TJAR.2014.67044.

    Article  Google Scholar 

  24. DeFreest L, Tafen M, Bhakta A, Ata A, Martone S, Glotzer O, et al. Open reduction and internal fixation of rib fractures in polytrauma patients with flail chest. Am J Surg. 2016;211:761–7. https://doi.org/10.1016/j.amjsurg.2015.11.014.

    Article  PubMed  Google Scholar 

  25. Marasco SF, Šutalo ID, Bui AV. Mode of failure of rib fixation with absorbable plates: a clinical and numerical modeling study. J Trauma Inj Infect Crit Care. 2010;68:1225–33. https://doi.org/10.1097/TA.0b013e3181d27cab.

    Article  Google Scholar 

  26. de Moya M, Nirula R, Biffl W. Rib fixation: Who, What, When? Trauma Surg Acute Care Open. 2017;2:e000059. https://doi.org/10.1136/tsaco-2016-000059.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Imajima Y, Kitano M, Ueda T. Intramedullary fixation using Kirschner wires in children with osteogenesis imperfecta. J Pediatr Orthop. 2015;35:431–4. https://doi.org/10.1097/BPO.0000000000000285.

    Article  PubMed  Google Scholar 

  28. Zhang Q, Song L, Ning S, Xie H, Li N, Wang Y. Recent advances in rib fracture fixation. J Thorac Dis. 2019;11:S1070–7. https://doi.org/10.21037/jtd.2019.04.99.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bottlang M, Walleser S, Noll M, Honold S, Madey SM, Fitzpatrick D, et al. Biomechanical rationale and evaluation of an implant system for rib fracture fixation. Eur J Trauma Emerg Surg. 2010;36:417–26. https://doi.org/10.1007/s00068-010-0047-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reber PU, Kniemeyer HW, Ris HB. Reconstruction plates for internal fixation of flail chest. Ann Thorac Surg. 1998;66:2158.

    CAS  PubMed  Google Scholar 

  31. Bulger EM, Arneson MA, Mock CN, Jurkovich GJ. Rib fractures in the elderly. J Trauma. 2000;48:1040–6. https://doi.org/10.1097/00005373-200006000-00007 (discussion 1046-1047).

    Article  CAS  PubMed  Google Scholar 

  32. Rehm KE, Rehm KE. Die osteosynthese der thoraxwandinstabilitäten: mit 44 tabellen. Berlin Heidelberg New York Tokyo: Springer; 1986.

    Book  Google Scholar 

  33. Helzel I, Long W, Fitzpatrick D, Madey S, Bottlang M. Evaluation of intramedullary rib splints for less-invasive stabilisation of rib fractures. Injury. 2009;40:1104–10. https://doi.org/10.1016/j.injury.2009.06.004.

    Article  PubMed  Google Scholar 

  34. Ypma TJ. Historical development of the Newton-Raphson method. SIAM Rev. 1995;37:531–51. https://doi.org/10.1137/1037125.

    Article  Google Scholar 

  35. Yoganandan N, Pintar FA. Biomechanics of human thoracic ribs. J Biomech Eng. 1998;120:100–4. https://doi.org/10.1115/1.2834288.

    Article  CAS  PubMed  Google Scholar 

  36. Lodhia JV, Konstantinidis K, Papagiannopoulos K. Surgical management of multiple rib fractures/flail chest. J Thorac Dis. 2019;11:1668–75. https://doi.org/10.21037/jtd.2019.03.54.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Marasco S, Quayle M, Summerhayes R, Šutalo ID, Liovic P. An assessment of outcomes with intramedullary fixation of fractured ribs. J Cardiothorac Surg. 2016;11:126. https://doi.org/10.1186/s13019-016-0510-3.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Marasco S, Saxena P. Surgical rib fixation—technical aspects. Injury. 2015;46:929–32. https://doi.org/10.1016/j.injury.2014.12.021.

    Article  PubMed  Google Scholar 

  39. Sarani B, Schulte L, Diaz JJ. Pitfalls associated with open reduction and internal fixation of fractured ribs. Injury. 2015;46:2335–40. https://doi.org/10.1016/j.injury.2015.10.022.

    Article  PubMed  Google Scholar 

  40. Sarani B, Allen R, Pieracci FM, Doben AR, Eriksson E, Bauman ZM, et al. Characteristics of hardware failure in patients undergoing surgical stabilization of rib fractures: a chest wall injury society multicenter study. J Trauma Acute Care Surg. 2019;87:1277–81. https://doi.org/10.1097/TA.0000000000002373.

    Article  PubMed  Google Scholar 

Download references

Funding

National Institute of Health, ACUTE innovations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qun Zhang.

Ethics declarations

Conflict of interest

Giovanni Oppizzi, Dali Xu, Tirth Patel, Jose Diaz and Li-Qun Zhang declare that they have no conflict of interest.

Disclosure

The study was support in part by Acumed and the National Institutes of Health.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oppizzi, G., Xu, D., Patel, T. et al. Open reduction internal fixation of rib fractures: a biomechanical comparison between the RibLoc U Plus® system and anterior plate in rib implants. Eur J Trauma Emerg Surg 49, 383–391 (2023). https://doi.org/10.1007/s00068-022-02075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-022-02075-x

Keywords

Navigation