Youngblood RL, Truong NF, Segura T, Shea LD. It ’s all in the delivery : designing hydrogels for cell and non-viral gene therapies. Mol Ther. 2018;26:1–20. https://doi.org/10.1016/j.ymthe.2018.07.022.
CAS
Article
Google Scholar
Seidlits SK, Gower RM, Shepard JA, Shea LD. Hydrogels for lentiviral gene delivery. Expert Opin Drug Deliv. 2014;10:499–509.
Article
Google Scholar
Sun Y, Nan D, Jin H, Qu X. Recent advances of injectable hydrogels for drug delivery and tissue engineering applications. Polym Testing. 2020;81.https://doi.org/10.1016/j.polymertesting.2019.106283.
Lee JH. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater Res. 2018. https://doi.org/10.1186/s40824-018-0138-6.
Article
PubMed
PubMed Central
Google Scholar
Thakur G. Hydrogels: Characterization, Drug Delivery, and Tissue engineering applications. Encyclopedia of Biomedical Polymers and Polymeric BiomaterialsEdition: 1stChapter: Taylor and Francis. 2014.
Onaciu A, Munteanu RA, Moldovan AI. Hydrogels based drug delivery synthesis characterization and administration. Pharmaceutics. 2019;11:432. https://doi.org/10.3390/pharmaceutics11090432.7.
CAS
Article
PubMed Central
Google Scholar
Lee J, Kim H. Emerging properties of hydrogels in tissue engineering. J Tissue Eng. 2018. https://doi.org/10.1177/2041731418768285.
Article
PubMed
PubMed Central
Google Scholar
El-sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: progress and challenges. Global Cardiol Sci Pract. 2013;38(3):316–42. https://doi.org/10.5339/gcsp.
Article
Google Scholar
Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, et al. Injectable hydrogels for cartilage and bone tissue engineering. Cit: Bone Res. 2017;14(5):17014. https://doi.org/10.1038/boneres.
Article
Google Scholar
Hao T, Li J, Yao F, Dong D, Wang Y, Yang B, et al. Injectable fullerenol/alginate hydrogel for suppression of oxidative stress damage in brown adipose-derived stem cells and cardiac repair. ACS Nano. 2017;11:5474–88. https://doi.org/10.1021/acsnano.7b00221.
CAS
Article
PubMed
Google Scholar
Li X, Sun Q, Li Q, Kawazoe N, Chen G. Functional hydrogels with tunable structures and properties for tissue engineering applications. Front Chem. 2018. https://doi.org/10.3389/fchem.
Article
PubMed
PubMed Central
Google Scholar
Sobczak M. Hydrogel-based active substance release systems for cosmetology and dermatology application: a review. Pharmaceutics. 2020;12(5):396. https://doi.org/10.3390/pharmaceutics12050396.
CAS
Article
PubMed Central
Google Scholar
Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y. Smart hydrogels in tissue engineering and regenerative medicine. Front Chem. 2019. https://doi.org/10.3389/fchem.2020.00245.
Article
Google Scholar
Vasile C, Pamfil D, Stoleru E. New developments in medical applications of hybrid hydrogels containing natural polymers. Molecules. 2020;25:1539. https://doi.org/10.3390/molecules25071539.
CAS
Article
PubMed Central
Google Scholar
Dragan ES. Design and applications of interpenetrating polymer network hydrogels. A review design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J. 2017;243:572–90. https://doi.org/10.1016/j.cej.2014.01.065.
CAS
Article
Google Scholar
Grijalvo S, Nieto-díaz M, Maza RM, Eritja R, Díaz DD. Alginate hydrogels as scaffolds and delivery systems to repair the damaged spinal cord. Biotechnol J. 2019;1900275:1–8. https://doi.org/10.1002/biot.201900275.
CAS
Article
Google Scholar
Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurf Biotribol. 2015;1:161–76. https://doi.org/10.1016/j.bsbt.2015.08.002.
Article
Google Scholar
Wei Q, Deng N, Guo J, Deng J. Synthetic polymers for biomedical applications. Int J Biomater. 2018. https://doi.org/10.1155/2018/7158621.
Article
PubMed
PubMed Central
Google Scholar
Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6:105–21. https://doi.org/10.1016/j.jare.2013.07.006.
CAS
Article
PubMed
Google Scholar
Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffo. Expert Rev Med Devices. 2012;8(5):607–26. https://doi.org/10.1586/erd.11.27.
CAS
Article
Google Scholar
Li D, Liu T, Yu X, Wu D, Su Z. Fabrication of graphene-biomacromolecule hybrid materials for tissue engineering application. Polymer Chem. 2017;8(30):4309–21. https://doi.org/10.1039/C7PY00935F.
CAS
Article
Google Scholar
Zhu T, Mao J, Cheng Y, Liu H, Lv L, Ge M, et al. Recent progress of polysaccharide-based hydrogel interfaces for wound healing and tissue engineering. Adv Mater Interfaces. 2019;1900761:1–22. https://doi.org/10.1002/admi.201900761.
CAS
Article
Google Scholar
Spinal cord injury_ as many as 500 000 people suffer each year (2013) WHO
Hagen EM. Acute complications of spinal cord injuries. World J Orthop. 2015;6:17–23. https://doi.org/10.5312/wjo.v6.i1.17.
Article
PubMed
PubMed Central
Google Scholar
Alizadeh A, Dyck SM, Karimi-abdolrezaee S. Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci. 2015;8:1–27. https://doi.org/10.3389/fnmol.2015.00035.
CAS
Article
Google Scholar
Ramezani F, Neshasteh-Riz A, Ghadaksaz A, Fazeli SM, Janzadeh A, Hamblin MR. Mechanistic aspects of photobiomodulation therapy in the nervous system. Lasers Med Sci. 2021. https://doi.org/10.1007/s10103-021-03277-2.
Article
PubMed
Google Scholar
Behroozi Z, Ramezani F, Janzadeh A, Rahimi B, Nasirinezhad F. Platelet-rich plasma in umbilical cord blood reduces neuropathic pain in spinal cord injury by altering the expression of ATP receptors. Physiol Behav. 2021;228: 113186. https://doi.org/10.1016/j.physbeh.2020.113186.
CAS
Article
PubMed
Google Scholar
Ramezani F, Razmgir M, Tanha K, Nasirinezhad F, Neshastehriz A, Bahrami-Ahmadi A, Hamblin MR, Janzadeh A. Photobiomodulation for spinal cord injury: a systematic review and meta-analysis. Physiol Behav. 2020;224: 112977. https://doi.org/10.1016/j.physbeh.2020.112977.
CAS
Article
PubMed
Google Scholar
Mao AS, Mooney DJ. Regenerative medicine: current therapies and future directions. Spec feature: Perspect. 2015. https://doi.org/10.1073/pnas.1508520112.
Article
Google Scholar
Christ GJ, Saul JM, Furth ME, Andersson K, Forest W, Medicine R, et al. The pharmacology of regenerative medicine. Regenerativemedicine. 2013;11(8):1091–133. https://doi.org/10.2217/rme-2016-0108.
CAS
Article
Google Scholar
Straley KS, Wong C, Foo P, Heilshorn SC. Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma. 2009;27(1):1–19. https://doi.org/10.1089/neu.2009.0948.
Article
Google Scholar
Wang Y, Tan H, Hui X. Biomaterial scaffolds in regenerative therapy of the central nervous system. Bio Med Res Int. 2018. https://doi.org/10.1155/2018/7848901.
Article
Google Scholar
Kornev VA, Grebenik EA, Solovieva AB, Dmitriev RI, Timashev PS. Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: a state-of-the-art review. Comput Struct Biotechnol J. 2018;16:488–502. https://doi.org/10.1016/j.csbj.2018.10.011.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ashammakhi N, Kim H, Ehsanipour A, Bierman RD, Kaarela O, Xue C. Regenerative therapies for spinal cord injury. Tissue Eng Part B Rev. 2019;25(6):471–91. https://doi.org/10.1089/ten.TEB.2019.0182.
Article
PubMed
PubMed Central
Google Scholar
Xiaoguang Li, Z Y, Y Y. Studies on repairing of hemisected thoracic spinal cord of adultrats by using a chitosan tube filled with alginate fibers. Prog Nat Sci. 2006;16(10):1051–5. https://doi.org/10.1080/10020070612330109
Article
Google Scholar
Wu S, Suzuki Y, Kitada M, Kitaura M, Kataoka K, Takahashi J, Ide C, Nishimura Y. Migration, integration, and differentiation of hippocampus-derived neurosphere cells after transplantation into injured rat spinal cord. Neurosci Let. 2001;312(3):173–6. https://doi.org/10.1016/s0304-3940(01)02219-4.
CAS
Article
Google Scholar
Tobias C, Han SS, Shumsky J, Duckhyun Kim M, Tumolo N, Dhoot M, Wheatley I, Fischer A, Tessler MM. Alginate encapsulated BDNF-producing fibroblast grafts permit recovery of function after spinal cord injury in the absence of immune suppression. J Neurotrauma. 2005;2:2. https://doi.org/10.1089/NEU.2005.22.138.
Article
Google Scholar
Sitoci-Ficici KerimHakan, Matyash M, Uckermann O, RobertaGalli EL, Robert Later CI. Non-functionalized soft alginate hydrogel promotes locomotor recovery after spinal cord injury in a rat hemimyelonectomy model. Acta Neurochir. 2017. https://doi.org/10.1007/s00701-017-3389-4.
Article
PubMed
Google Scholar
Schackel T, Kumar P, Günther M, Shengwen Liu M, Brunner BS, Puttagunta R, Rainer Müller NW. Peptides and astroglia improve the regenerative capacity of alginate gels in the injured spinal cord. Tissue Eng. 2019;25(7–8):522–37. https://doi.org/10.1089/ten.TEA.2018.0082.
CAS
Article
Google Scholar
Weberc T, Faberc C, Vroemena M, Ulrich Bogdahna NW. Hydrogels, the promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary. Biomaterials. 2006;27:3560–9. https://doi.org/10.1016/j.biomaterials.2006.01.053.
CAS
Article
Google Scholar
Hassannejad Z, Vahedi F, Zadegan SA, Mokhatab M, Rezvan M, Saadat S, et al. Potential variables affecting the quality of animal studies regarding pathophysiology of traumatic spinal cord injuries. Nature Publ Group. 2015;54:579–83. https://doi.org/10.1038/sc.2015.215.
Article
Google Scholar
Park JH, Min J, Baek SR, Kim SW, Kwon IK, Jeon SR. Enhanced neuroregenerative effects by scaffold for the treatment of a rat spinal cord injury with Wnt3a-secreting fibroblasts. Acta Neurochir. 2013;155(5):809–16. https://doi.org/10.1007/s00701-013-1663-7.
Article
PubMed
Google Scholar
Yao Z-A, Chen F-J, Cui H-l, Lin T, Na Guo HW. Efficacy of chitosan and sodium alginate scaffolds for repair of spinal cord injury in rats. Neural Regen Res. 2018;13(3):502–9. https://doi.org/10.4103/1673-5374.228756.
CAS
Article
PubMed
PubMed Central
Google Scholar
Grulova I, Slovinska L, Blaško J, Devaux S, Wisztorski M, Salzet M, Fournier I, Kryukov O, C S, C D. Delivery of alginate scaffold releasing two trophic factors for spinal cord injury repair. Scientificreports. 2015;5:13702. https://doi.org/10.1038/srep13702.
CAS
Article
Google Scholar
Galli R, Sitoci-Ficici KH, Uckermann O, Later R, Marečková M, Koch M, Leipnitz E, Schackert G, Koch E, Michael Gelinsky GS, K M. Label-free multiphoton microscopy reveals relevant tissue changes induced by alginate hydrogel implantation in rat spinal cord injury. Scientificreports. 2018;8:10841. https://doi.org/10.1038/s41598-018-29140-z.
CAS
Article
Google Scholar
Yilefltiri AFGKHTOHSMF. Fetal allogeneic umbilical cord cell transplantation improves motor function in spinal cord-injured rats. Turk Neurosurg. 2010;20(3):286–94. https://doi.org/10.5137/1019-5149.JTN.3020-10.1.
Article
Google Scholar
Ding Y-M, Li Y-Y, Wang C, Huang H, Zheng C-C, Huang S-H, Xuan Y, Xiao-yi Sun XZ. Nischarin-siRNA delivered by polyethylenimine-alginate nanoparticles accelerates motor function recovery after spinal cord injury. Neural Regen Res. 2017;12(10):1687–94. https://doi.org/10.4103/1673-5374.217348.
CAS
Article
PubMed
PubMed Central
Google Scholar
Blaško J, Szekiova E, Slovinska L, Kafka J, C D. Axonal outgrowth stimulation after alginate/mesenchymal stem cell therapy in injured rat spinal cord. Acta Neurobiol Exp. 2017;77:337–50. https://doi.org/10.21307/ane-2017-066.
Article
Google Scholar
Kataoka K, Suzuki Y, Kitada M, Katsunori Ohnishi KS, Tanihara M, Ide C, Katsuaki Endo YN. Alginate, a bioresorbable material derived from brown seaweed, enhances elongation of amputated axons of spinal cord in infant rats. J Biomed Mater Res. 2001;54(3):373–84. https://doi.org/10.1002/1097-4636.
CAS
Article
PubMed
Google Scholar
Hosseini SM, Ali Sharafkhah OK-H, Semsar-Kazerooni M. Transplantation of neural stem cells cultured in alginate scaffold for spinal cord injury in rats. Asian Spine J. 2016;10:611–8. https://doi.org/10.4184/asj.2016.10.4.611.
Article
PubMed
PubMed Central
Google Scholar
Nazemi Z, Nourbakhsh MS, Kiani S, Heydari Y, Ashtiani MK, Hamed Daemi HB. Co-delivery of minocycline and paclitaxel from injectable hydrogel for treatment of spinal cord injury. J Control Release. 2020. https://doi.org/10.1016/j.jconrel.2020.02.009.
Article
PubMed
Google Scholar
Szekalska M, Puciłowska A, Szymańska E, Ciosek P, W K. Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polymer Sci. 2016. https://doi.org/10.1155/2016/7697031.
Article
Google Scholar
Tønnesen HH, Karlsen J, Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Indus Pharm. 2002. https://doi.org/10.1081/DDC-120003853.
Article
Google Scholar
Abasalizadeh F, Moghaddam SV, Alizadeh E, Kashani E, Mohammad S, Fazljou B, et al. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng. 2020;7:1–22. https://doi.org/10.1186/s13036-020-0227-7.
CAS
Article
Google Scholar
Andersen T, Auk-emblem P, Dornish M. 3D cell culture in alginate hydrogels. Microarrays. 2015;4(2):133–61. https://doi.org/10.3390/microarrays4020133.
CAS
Article
PubMed
PubMed Central
Google Scholar