Skip to main content

Sarcopenia estimation using psoas major enhances P-POSSUM mortality prediction in older patients undergoing emergency laparotomy: cross-sectional study

Abstract

Introduction

Emergency laparotomy is a considerable component of a colorectal surgeon’s workload and conveys substantial morbidity and mortality, particularly in older patients. Frailty is associated with poorer surgical outcomes. Frailty and sarcopenia assessment using Computed Tomography (CT) calculation of psoas major area predicts outcomes in elective and emergency surgery. Current risk predictors do not incorporate frailty metrics. We investigated whether sarcopenia measurement enhanced mortality prediction in over-65 s who underwent emergency laparotomy and emergency colorectal resection.

Methods

An analysis of data collected prospectively during the National Emergency Laparotomy Audit (NELA) was conducted. Psoas major (PM) cross-sectional area was measured at the L3 level and a ratio of PM to L3 vertebral body area (PML3) was calculated. Outcome measures included inpatient, 30-day and 90-day mortality. Statistical analysis was conducted using Mann–Whitney, Chi-squared and receiver operating characteristics (ROC). Logistic regression was conducted using P-POSSUM variables with and without the addition of PML3.

Results

Nine-hundred and forty-four over-65 s underwent emergency laparotomy from three United Kingdom hospitals were included. Median age was 76 years (IQR 70–82 years). Inpatient mortality was 21.9%, 30-day mortality was 16.3% and 90-day mortality was 20.7%. PML3 less than 0.39 for males and 0.31 for females indicated significantly worse outcomes (inpatient mortality 68% vs 5.6%, 30-day mortality 50.6% vs 4.0%,90-day mortality 64% vs 5.2%, p < 0.0001). PML3 was independently associated with mortality in multivariate analysis (p < 0.0001). Addition of PML3 to P-POSSUM variables improved area under the curve (AUC) on ROC analysis for inpatient mortality (P-POSSUM:0.78 vs P-POSSUM + PML3:0.917), 30-day mortality(P-POSSUM:0.802 vs P-POSSUM + PML3: 0.91) and 90-day mortality (P-POSSUM:0.79 vs P-POSSUM + PML3: 0.91).

Conclusion

PML3 is an accurate predictor of mortality in over-65 s undergoing emergency laparotomy. Addition of PML3 to POSSUM appears to improve mortality risk prediction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig.5

Availability of data and material

Data can be made available upon request.

References

  1. Cooper Z, Scott JW, Rosenthal RA, Mitchell SL. Emergency major abdominal surgical procedures in older adults: a systematic review of mortality and functional outcomes. J Am Geriatr Soc. 2015;63(12):2563–71.

    Article  Google Scholar 

  2. Saunders DI, Murray D, Pichel AC, Varley S, Peden CJ. UK emergency laparotomy network. Variations in mortality after emergency laparotomy: the first report of the UK emergency laparotomy network. Br J Anaesth. 2012;109(3):368–75.

    CAS  Article  Google Scholar 

  3. Symons NR, Moorthy K, Almoudaris AM, Bottle A, Aylin P, Vincent CA, Faiz OD. Mortality in high-risk emergency general surgical admissions. Br J Surg. 2013;100(10):1318–25.

    CAS  Article  Google Scholar 

  4. The Royal College of Surgeons of Great Britain and Ireland. The higher risk general surgical patient. Towards improved care for a forgotten group. 2011. https://www.rcseng.ac.uk/library-and-publications/rcs-publications/docs/the-higher-risk-general-surgical-patient/. Accessed May 2020.

  5. London R.NELA project team. Second patient report of the national emergency laparotomy audit. 2016. http://www.nela.org.uk/reports. Accessed 28 Aug 2019.

  6. Copeland GP, Jones D, Walters M. POSSUM: a scoring system for surgical audit. Br J Surg. 1991;78:355–60.

    CAS  Article  Google Scholar 

  7. Kulkarni SV, Naik AS, Subramanian N Jr. APACHE-II scoring system in perforative peritonitis. Am J Surg. 2007;194:549–52.

    Article  Google Scholar 

  8. Moonesinghe SR, Mythen MG, Das P, Rowan KM, Grocott MP. Risk stratification tools for predicting morbidity and mortality in adult patients undergoing major surgery: qualitative systematic review. Anaesthesiology. 2013;119(4):959–81.

    Article  Google Scholar 

  9. NELA and Possum differences. National emergency laparotomy audit. https://www.nela.org.uk/NELA-POSSUM-Differences. Accessed 28 Aug 2019)

  10. Wakabayashi H, Sano T, Yachida S, Okano K, Izuishi K, Suzuki Y. Validation of risk assessment scoring systems for an audit of elective surgery for gastrointestinal cancer in elderly patients: an audit. Int J Surg. 2007;5(5):323–7.

    Article  Google Scholar 

  11. Loc PTB, du Montcel ST, Duron JJ, Levard H, Suc B, Descottes B, et al. Elderly POSSUM, a dedicated score for prediction of mortality and morbidity after major colorectal surgery in older patients. Br J Surg. 2010;97(3):396–403.

    Article  Google Scholar 

  12. Fried LP, Xue QL, Cappola AR, Ferrucci L, Chaves P, Varadhan R, Guralnik JM, Leng SX, Semba RD, Walston JD, Blaum CS, Bandeen-Roche K. Nonlinear multisystem physiological dysregulation associated with frailty in older women: implications for etiology and treatment. J Gerontol A Bio Sci Med Sci. 2009;64:1049–57.

    Article  Google Scholar 

  13. Clegg A, Young J, Iliffe S, Rikkert MC, Rockwood K. Frailty in elderly people. The Lancet. 2013;381(9868):752–62.

    Article  Google Scholar 

  14. Tosato M, Marzetti E, Cesari M, Savera G, Miller RR, Bernabei R, Landi F, Calvani R. Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clin Exp Res. 2017;29(1):19–27.

    Article  Google Scholar 

  15. Simpson G, Manu N, Magee C, Wilson J, Moug S5 Vimalachandran D. Measuring sarcopenia on pre-operative CT in older adults undergoing emergency laparotomy: a comparison of three different calculations. Int J Colorectal Disease. 2020 Mar 25.

  16. Jones KI, Doleman B, Scott S, Lund JN, Williams JP. Simple psoas cross-sectional area measurement is a quick and easy method to assess sarcopenia and predicts major surgical complications. Colorectal Dis. 2015;1:O20–6.

    Article  Google Scholar 

  17. Drudi LM, Phung K, Ades M, Zuckerman J, Mullie L, Steinmetz OK, Obrand DI, Afilalo J. Psoas muscle area predicts all- cause mortality after endovascular and open aortic aneurysm repair. Eur J Vasc Endovasc Surg. 2016;52:764–9.

    CAS  Article  Google Scholar 

  18. Shirai H, Kaido T, Hamaguchi Y, et al. Preoperative low muscle mass and low muscle quality negatively impact on pulmonary function in patients undergoing hepatectomy for hepatocellular carcinoma. Liver Cancer. 2018;7(1):76–89.

    Article  Google Scholar 

  19. Smith AB, Deal AM, Yu H, Boyd B, Matthews J, Wallen EM, et al. Sarcopenia as a predictor of complications and survival following radical cystectomy. J Urol. 2014;191(6):1714–20.

    Article  Google Scholar 

  20. Dirks RC, Edwards BL, Tong E, Schaheen B, Turrentine FE, Shada A, et al. Sarcopenia in emergency abdominal surgery. J Surg Res. 2017;207:13–21.

    Article  Google Scholar 

  21. Hajibandeh S, Hajibandeh S, Jarvis R, Bhogal T, Dalmia S. Meta-analysis of the effect of sarcopenia in predicting postoperative mortality in emergency and elective abdominal surgery. Surgeon. 2019;17(6):370–80 (pii: S1479-666X(18)30119-7).

    Article  Google Scholar 

  22. Agha R, Abdall-Razak A, Crossley E, Dowlut N, Iosifidis C, Mathew G, for the STROCSS Group. The STROCSS 2019 guideline: strengthening the reporting of cohort studies in surgery. Int J Surg. 2019;72:156–65.

    Article  Google Scholar 

  23. Dent E, Kowal P, Hoogendijk EO. Frailty measurement in research and clinical practice: a review. Eur J Intern Med. 2016;31:3–10.

    Article  Google Scholar 

  24. Parmar KL, Law J, Carter B, Hewitt J, Boyle JM, Casey P, et al. Frailty in older patients undergoing emergency laparotomy: results from the UK observational Emergency Laparotomy and Frailty (ELF) Study. Ann Surg. 2019;7(10):e017928.

    Google Scholar 

  25. Joseph B, Zangbar B, Pandit V, Fain M, Mohler MJ, Kulvatunyou N, et al. Emergency general surgery in the elderly: too old or too frail? J Am Coll Surg. 2016;222(5):805–13.

    Article  Google Scholar 

  26. Orouji Jokar T, Ibraheem K, Rhee P, Kulavatunyou N, Haider A, Phelan HA, et al. Emergency general surgery specific frailty index: a validation study. J Trauma Acute Care Surg. 2016;81(2):254–60.

    Article  Google Scholar 

  27. Heymsfield SB, Gonzalez MC, Lu J, Jia G, Zheng J. Skeletal muscle mass and quality: evolution of modern measurement concepts in the context of sarcopenia. Proc Nutr Soc. 2015;74(4):355–66.

    Article  Google Scholar 

  28. Montgomery v Lanarkshire Health Board. 2015. SC 11 [2015] 1 AC 1430.

Download references

Funding

None to declare.

Author information

Authors and Affiliations

Authors

Contributions

GS: data collection, analysis, write up of article. JW: data collection, study design, write up of article. DV: write up of article, study design. FM: data collection, write up of article. CM: supervising author, study design, write up of article.

Corresponding author

Correspondence to Gregory Simpson.

Ethics declarations

Conflict of interest

No conflicts of interest or competing interests to declare.

Ethics approval

No ethical approval required as study of a retrospective, observational design. No intervention made in patients care.

Consent to participate

Consent to participate has been gained.

Appendix

Appendix

Multivariate analysis of pre-operative factors and mortality.

  Inpatient mortality 30-day mortality 90-day mortality
Sig OR 95% CI   Sig OR 95% CI   Sig OR 95% CI  
Critical care stay (days) 0.916 1.040 0.496 2.181 0.967 0.984 0.452 2.139 0.751 0.886 0.418 1.875
Time to theatre (hours) 0.889 1.003 0.968 1.038 0.482 1.012 0.979 1.046 0.836 0.996 0.959 1.034
PML3 0.000 11.031 5.359 16.272 0.000 10.125 5.612 17.702 0.000 11.243 5.481 16.956
ASA 0.000     0.000     0.000    
 ASA 1 (ref)
 ASA 2 0.293 0.346 0.048 2.500 0.129 0.217 0.030 1.557 0.227 0.298 0.042 2.126
 ASA 3 0.488 0.509 0.075 3.437 0.193 0.285 0.043 1.884 0.553 0.565 0.086 3.727
 ASA 4 0.487 1.966 0.293 13.208 0.797 1.278 0.197 8.286 0.460 2.036 0.309 13.405
 ASA 5 0.179 4.776 0.488 46.754 0.164 4.965 0.520 47.362 0.140 5.528 0.571 53.512
 Age 0.403 1.017 0.978 1.056 0.614 1.010 0.954 1.053 0.937 1.002 0.963 1.042
Blood loss 0.031     0.006     0.010    
 < 100 ml (ref)             
 101–500 ml 0.021 2.225 1.126 4.396 0.001 3.670 1.675 8.042 0.004 2.814 1.389 5.702
 501–999 ml 0.316 2.071 0.498 8.603 0.148 3.022 0.674 13.546 0.210 2.556 0.589 11.096
 > 1000 ml 0.014 10.183 1.597 64.949 0.014 9.348 1.569 55.708 0.012 11.221 1.704 73.887
Soiling 0.084     0.084     0.332    
 None (ref)             
 Serous fluid 0.292 1.502 0.705 3.202 0.255 1.611 0.709 3.663 0.473 1.327 0.612 2.876
 Localised pus 0.362 0.574 0.174 1.894 0.750 1.211 0.373 3.936 0.532 0.689 0.215 2.213
 Free pus, blood or bowel content 0.044 2.029 1.020 4.035 0.216 1.581 0.765 3.270 0.146 1.680 0.835 3.380
Malignancy 0.453     0.221     0.608    
 None (ref)             
 Primary only 0.567 0.771 0.317 1.876 0.047 0.328 0.109 0.987 0.761 0.873 0.363 2.099
 Nodal metastases 0.742 1.294 0.278 6.023 0.778 1.253 0.261 6.013 0.853 1.161 0.239 5.638
 Distant metastases 0.160 2.175 0.735 6.429 0.557 0.683 0.192 2.435 0.207 2.042 0.674 6.183

Multivariate analysis of P-POSSUM variables with PML3.

  Inpatient mortality 30-day mortality 90-day mortality
Sig OR 95% CI   Sig OR 95% CI   Sig OR 95% CI  
Age 0.091 1.028 0.996 1.061 0.301 1.018 0.984 1.053 0.780 1.005 0.972 1.038
Creatinine 0.001 1.006 1.002 1.010 0.048 1.004 1.000 1.007 0.001 1.006 1.003 1.010
Sodium 0.199 1.030 0.985 1.076 0.227 1.029 0.982 1.078 0.079 1.042 0.995 1.092
Potassium 0.658 0.916 0.621 1.350 0.956 1.012 0.670 1.528 0.416 0.847 0.568 1.263
Urea 0.281 1.009 0.993 1.026 0.301 1.009 0.992 1.027 0.316 1.009 0.992 1.026
Haemoglobin 0.021 0.988 0.978 0.998 0.334 0.995 0.984 1.005 0.036 0.989 0.979 0.999
WCC 0.663 0.996 0.979 1.014 0.648 0.996 0.978 1.014 0.717 0.997 0.980 1.014
Pulse 0.254 1.007 0.995 1.020 0.687 1.003 0.989 1.016 0.446 1.005 0.992 1.018
BP 0.434 0.996 0.987 1.006 0.019 0.988 0.978 0.998 0.381 0.996 0.986 1.005
GCS 0.349 0.940 0.825 1.070 0.371 0.943 0.828 1.073 0.340 0.937 0.821 1.071
ECG 0.279     0.115     0.309    
 Normal (ref)             
 AF, rate 60–90 0.154 1.840 0.796 4.254 0.039 2.495 1.047 5.945 0.187 1.794 0.753 4.272
 Any other abnormality 0.750 0.911 0.512 1.619 0.748 1.103 0.606 2.009 0.693 0.887 0.488 1.610
Cardiac 0.603     0.118     0.628    
 No cardiac failure (ref)             
 Diuretic, digoxin, Rx for angina/HTN 0.283 1.347 0.783 2.318 0.038 1.818 1.033 3.199 0.193 1.452 0.828 2.546
 Peripheral oedema, warfarin, borderline cardiomyopathy 0.770 0.884 0.386 2.023 0.643 0.813 0.338 1.956 0.757 1.144 0.488 2.678
 Raised JVP, cardiomegaly 0.763 0.804 0.195 3.325 0.770 1.234 0.302 5.050 0.902 1.095 0.259 4.633
Respiratory 0.007     0.021     0.016    
 No dyspnoea             
 Dyspnoea on exertion, mild COAD 0.516 0.824 0.460 1.477 0.260 0.699 0.375 1.303 0.873 0.952 0.524 1.732
 Limiting dyspnoea, moderate COAD 0.105 1.749 0.890 3.437 0.188 1.598 0.795 3.211 0.148 1.675 0.833 3.368
 Dyspnoea at rest, pulmonary fibrosis 0.005 3.878 1.510 9.956 0.031 2.812 1.100 7.193 0.004 4.086 1.560 10.698
Operative severity 0.784 1.072 0.653 1.760 0.402 1.249 0.743 2.098 0.813 0.940 0.565 1.565
No. of operations 0.619     0.710     0.507    
 One (ref)             
 Two 0.633 0.832 0.391 1.772 0.843 0.923 0.417 2.041 0.672 0.845 0.387 1.846
 More than 2 0.423 2.687 0.239 30.170 0.438 2.467 0.252 24.149 0.300 3.663 0.315 42.611
Blood loss 0.020     0.012     0.005    
 < 100mls (ref)             
 101–500 mls 0.062 1.679 0.974 2.894 0.006 2.320 1.277 4.213 0.014 2.041 1.152 3.617
 501–999 mls 0.825 1.158 0.314 4.268 0.915 1.077 0.278 4.166 0.791 1.200 0.312 4.612
 > 1000 mls 0.004 9.641 2.106 44.133 0.020 7.039 1.352 36.643 0.002 12.044 2.536 57.200
Peritoneal soiling 0.180     0.391     0.288    
 No soiling(ref)             
 Minor soiling 0.559 1.195 0.657 2.175 0.239 1.482 0.770 2.851 0.434 1.282 0.688 2.391
 Local pus 0.636 0.787 0.292 2.119 0.947 1.037 0.357 3.012 0.777 0.862 0.308 2.413
 Free bowel content, pus or blood 0.061 1.793 0.974 3.302 0.117 1.672 0.880 3.176 0.086 1.740 0.925 3.273
Malignancy 0.194     0.045     0.055    
 Not malignant (ref)             
 Primary malignancy only 0.281 0.672 0.326 1.385 0.005 0.289 0.122 0.686 0.280 0.663 0.315 1.398
 Malignancy + nodal mets 0.469 1.535 0.481 4.901 0.514 0.652 0.181 2.355 0.891 0.918 0.270 3.124
 Malignancy + distant mets 0.110 2.014 0.853 4.757 0.683 0.821 0.320 2.112 0.017 2.884 1.209 6.881
PML3 0.000 12.782 7.900 18.462 0.000 10.716 6.735 17.273 0.000 13.135 7.974 20.995

*Age, creatinine, sodium, potassium, urea, haemoglobin, WCC, pulse, BP and GCS included as ordinal data. ECG, cardiac and respiratory findings, operative severity, no. of operation, blood loss, peritoneal soiling, malignancy and PML3 included as nominal data. Cut-off for PML3 was 0.35.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simpson, G., Wilson, J., Vimalachandran, D. et al. Sarcopenia estimation using psoas major enhances P-POSSUM mortality prediction in older patients undergoing emergency laparotomy: cross-sectional study. Eur J Trauma Emerg Surg 48, 2003–2012 (2022). https://doi.org/10.1007/s00068-021-01669-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-021-01669-1

Keywords

  • Sarcopenia
  • Risk prediction
  • Emergency laparotomy