Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, Abbasi-Kangevari M, Abbastabar H, Abd-Allah F, Abdelalim A, Abdollahi M. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet (Lond, Engl). 2020;396(10258):1204–22.
Google Scholar
Xu W, Song Y. Biomarkers for patients with trauma associated acute respiratory distress syndrome. Mil Med Res. 2017;4:25.
PubMed
PubMed Central
Google Scholar
Eguchi A, Kostallari E, Feldstein AE, Shah VH. Extracellular vesicles, the liquid biopsy of the future. J Hepatol. 2019;70(6):1292–4.
PubMed
PubMed Central
Google Scholar
Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946;166(1):189–97.
CAS
PubMed
Google Scholar
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.
PubMed
PubMed Central
Google Scholar
Lässer C, Jang SC, Lötvall J. Subpopulations of extracellular vesicles and their therapeutic potential. Mol Aspects Med. 2018;60:1–14.
PubMed
Google Scholar
Hirsova P, Ibrahim SH, Verma VK, Morton LA, Shah VH, et al. Extracellular vesicles in liver pathobiology. Small particles with big impact. Hepatology. 2016;64(6):2219–33.
PubMed
Google Scholar
Caruso S, Poon IKH. Apoptotic cell-derived extracellular vesicles: more than just debris. Front Immunol. 2018;9:1486.
PubMed
PubMed Central
Google Scholar
Kuravi SJ, Yates CM, Foster M, Harrison P, Hazeldine J, et al. Changes in the pattern of plasma extracellular vesicles after severe trauma. PLoS ONE. 2017;12(8):e0183640.
PubMed
PubMed Central
Google Scholar
Yáñez-Mó M, Siljander PR-M, Andreu Z, Zavec AB, Borràs FE, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.
PubMed
Google Scholar
Crescitelli R, Lässer C, Szabó TG, Kittel A, Eldh M, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2:20677.
Google Scholar
Karasu E, Eisenhardt SU, Harant J, Huber-Lang M. Extracellular vesicles. Packages sent with complement. Front Immunol. 2018;9:721.
PubMed
PubMed Central
Google Scholar
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478).
Hu G, Drescher KM, Chen X-M. Exosomal miRNAs: biological properties and therapeutic potential. Front Genet. 2012;3:56.
CAS
PubMed
PubMed Central
Google Scholar
Gonda DD, Akers JC, Kim R, Kalkanis SN, Hochberg FH, et al. Neuro-oncologic applications of exosomes, microvesicles, and other nano-sized extracellular particles. Neurosurgery. 2013;72(4):501–10.
PubMed
Google Scholar
Jeppesen DK, Hvam ML, Primdahl-Bengtson B, Boysen AT, Whitehead B, et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles. 2014;3:25011.
PubMed
Google Scholar
Yu L-L, Zhu J, Liu J-X, Jiang F, Ni W-K, et al. A comparison of traditional and novel methods for the separation of exosomes from human samples. Biomed Res Int. 2018;2018:3634563.
PubMed
PubMed Central
Google Scholar
Livshits MA, Livshts MA, Khomyakova E, Evtushenko EG, Lazarev VN, et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep. 2015;5:17319.
PubMed
Google Scholar
Zhang M, Jin K, Gao L, Zhang Z, Li F, et al. Methods and technologies for exosome isolation and characterization. Small Methods. 2018;2(9):1800021.
Google Scholar
Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics. 2017;7(3):789–804.
CAS
PubMed
PubMed Central
Google Scholar
Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2:20360.
Google Scholar
Lobb RJ, Becker M, Wen SW, Wong CSF, Wiegmans AP, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4:27031.
PubMed
Google Scholar
Merchant ML, Powell DW, Wilkey DW, Cummins TD, Deegens JK, et al. Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clin Appl. 2010;4(1):84–96.
CAS
PubMed
Google Scholar
Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol. 2007;292(5):F1657–61.
CAS
PubMed
Google Scholar
Reiner AT, Witwer KW, van Balkom BWM, de Beer J, Brodie C, et al. Concise review: developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl Med. 2017;6(8):1730–9.
PubMed
PubMed Central
Google Scholar
Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82(9):1024–32.
CAS
PubMed
Google Scholar
Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7):727.
CAS
PubMed Central
Google Scholar
Hong CS, Muller L, Boyiadzis M, Whiteside TL. Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia. PLoS ONE. 2014;9(8):e103310.
PubMed
PubMed Central
Google Scholar
Zeringer E, Barta T, Li M. Vlassov AV (2015) Strategies for isolation of exosomes. Cold Spring Harbor Protoc. 2015;4:319–23.
Google Scholar
Rider MA, Hurwitz SN, Meckes DG. ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Sci Rep. 2016;6:23978.
CAS
PubMed
PubMed Central
Google Scholar
van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3:24858.
Google Scholar
Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJP, et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomed Nanotechnol Biol Med. 2011;7(6):780–8.
CAS
Google Scholar
Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810.
CAS
PubMed
PubMed Central
Google Scholar
Palmieri V, Lucchetti D, Gatto I, Maiorana A, Marcantoni M, et al. Dynamic light scattering for the characterization and counting of extracellular vesicles: a powerful noninvasive tool. J Nanopart Res. 2014;16(9):1–8.
CAS
Google Scholar
Frisken BJ. Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl Opt. 2001;40(24):4087–91.
CAS
PubMed
Google Scholar
Gurunathan S, Kang M-H, Jeyaraj M, Qasim M, Kim J-H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):807.
Google Scholar
Ko J, Carpenter E, Issadore D. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst. 2016;141(2):450–60.
CAS
PubMed
PubMed Central
Google Scholar
Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, et al. The methods of choice for extracellular vesicles (EVs) characterization. Int J Mol Sci. 2017;18(6):1153.
PubMed Central
Google Scholar
Fleischmann C, Thomas-Rueddel DO, Hartmann M, Hartog CS, Welte T, et al. Hospital incidence and mortality rates of sepsis. Deutsches Arzteblatt Int. 2016;113(10):159–66.
Google Scholar
Moreira J. Severe sepsis and septic shock. N Engl J Med. 2013;369(21):2062–3.
Google Scholar
Huber-Lang M. Sepsis nach polytrauma. Trauma Berufskrankh. 2018;20(S1):73–6.
Google Scholar
Eriksson M, Nelson D, Nordgren A, Larsson A. Increased platelet microvesicle formation is associated with mortality in a porcine model of endotoxemia. Acta Anaesthesiol Scand. 1998;42(5):551–7.
CAS
PubMed
Google Scholar
Janiszewski M, Do Carmo AO, Pedro MA, Silva E, Knobel E, et al. Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity. A novel vascular redox pathway. Crit Care Med. 2004;32(3):818–25.
CAS
PubMed
Google Scholar
Matsumoto H, Yamakawa K, Ogura H, Koh T, Matsumoto N, et al. Clinical significance of tissue factor and CD13 double-positive microparticles in sirs patients with trauma and severe sepsis. Shock. 2017;47(4):409–15.
CAS
PubMed
Google Scholar
Dalli J, Norling LV, Montero-Melendez T, Federici Canova D, Lashin H, et al. Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. EMBO Mol Med. 2014;6(1):27–42.
CAS
PubMed
Google Scholar
Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, et al. ExoCarta. A web-based compendium of exosomal cargo. J Mol Biol. 2016;428(4):688–92.
CAS
PubMed
Google Scholar
Lee H, Abston E, Zhang D, Rai A, Jin Y. Extracellular vesicle. An emerging mediator of intercellular crosstalk in lung inflammation and injury. Front Immunol. 2018;9:924.
PubMed
PubMed Central
Google Scholar
Curry N, Raja A, Beavis J, Stanworth S, Harrison P. Levels of procoagulant microvesicles are elevated after traumatic injury and platelet microvesicles are negatively correlated with mortality. J Extracell Vesicles. 2014;3:25625.
PubMed
Google Scholar
Unnewehr H, Rittirsch D, Sarma JV, Zetoune F, Flierl MA, et al. Changes and regulation of the C5a receptor on neutrophils during septic shock in humans. J Immunol (Baltimore, MD:1950). 2013;190(8):4215–25.
CAS
Google Scholar
Xu J, Feng Y, Jeyaram A, Jay SM, Zou L, et al. Circulating plasma extracellular vesicles from septic mice induce inflammation via MicroRNA- and TLR7-dependent mechanisms. J Immunol (Baltimore, Md:1950). 2018;201(11):3392–400.
CAS
Google Scholar
Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 2015;6:7321.
CAS
PubMed
Google Scholar
Momen-Heravi F, Bala S, Bukong T, Szabo G. Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomed Nanotechnol Biol Med. 2014;10(7):1517–27.
CAS
Google Scholar
Liu J, Shi K, Chen M, Xu L, Hong J, et al. Elevated miR-155 expression induces immunosuppression via CD39(+) regulatory T-cells in sepsis patient. Int J Infect Dis. 2015;40:135–41.
PubMed
Google Scholar
Wang X, Gu H, Qin D, Yang L, Huang W, et al. Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Sci Rep. 2015;5:13721.
PubMed
PubMed Central
Google Scholar
Song Y, Dou H, Li X, Zhao X, Li Y, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis. Stem Cells (Dayton, Ohio). 2017;35(5):1208–21.
CAS
Google Scholar
Ti D, Hao H, Tong C, Liu J, Dong L, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med. 2015;13:308.
PubMed
PubMed Central
Google Scholar
Majdan M, Plancikova D, Brazinova A, Rusnak M, Nieboer D, et al. Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis. Lancet Public Health. 2016;1(2):e76–83.
PubMed
Google Scholar
Adekoya N, Thurman DJ, White DD, Webb KW. Surveillance for traumatic brain injury deaths—United States, 1989–1998. Morb Mortal Wkly Rep Surveill Summ (Washington, DC:2002). 2002;51(10):1–14.
Google Scholar
Maas AIR, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–41.
PubMed
Google Scholar
Brooks JC, Strauss DJ, Shavelle RM, Paculdo DR, Hammond FM, et al. Long-term disability and survival in traumatic brain injury: results from the National Institute on Disability and Rehabilitation Research Model Systems. Arch Phys Med Rehabil. 2013;94(11):2203–9.
PubMed
Google Scholar
Panaro MA, Benameur T, Porro C. Extracellular vesicles miRNA cargo for microglia polarization in traumatic brain injury. Biomolecules. 2020;10(6):901.
CAS
PubMed Central
Google Scholar
Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci. 2011;46(2):409–18.
CAS
PubMed
Google Scholar
Dickens AM, Tovar-Y-Romo LB, Yoo S-W, Trout AL, Bae M et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci Signaling. 2017;10(473).
Hooper C, Sainz-Fuertes R, Lynham S, Hye A, Killick R, et al. Wnt3a induces exosome secretion from primary cultured rat microglia. BMC Neurosci. 2012;13:144.
CAS
PubMed
PubMed Central
Google Scholar
Frühbeis C, Fröhlich D, Kuo WP, Amphornrat J, Thilemann S, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013;11(7):e1001604.
PubMed
PubMed Central
Google Scholar
Chen CC, Liu L, Ma F, Wong CW, Guo XE, et al. Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng. 2016;9(4):509–29.
CAS
PubMed
Google Scholar
Xu B, Zhang Y, Du X-F, Li J, Zi H-X, et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res. 2017;27(7):882–97.
CAS
PubMed
PubMed Central
Google Scholar
Gayen M, Bhomia M, Balakathiresan N, Knollmann-Ritschel B. Exosomal MicroRNAs released by activated astrocytes as potential neuroinflammatory biomarkers. Int J Mol Sci. 2020;21(7):2312.
CAS
PubMed Central
Google Scholar
Ko J, Hemphill M, Yang Z, Sewell E, Na YJ, et al. Diagnosis of traumatic brain injury using miRNA signatures in nanomagnetically isolated brain-derived extracellular vesicles. Lab Chip. 2018;18(23):3617–30.
CAS
PubMed
PubMed Central
Google Scholar
Lei P, Li Y, Chen X, Yang S, Zhang J. Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res. 2009;1284:191–201.
CAS
PubMed
Google Scholar
Harrison EB, Hochfelder CG, Lamberty BG, Meays BM, Morsey BM, et al. Traumatic brain injury increases levels of miR-21 in extracellular vesicles. Implications for neuroinflammation. FEBS Open Bio. 2016;6(8):835–46.
CAS
PubMed
PubMed Central
Google Scholar
Wang P, Ma H, Zhang Y, Zeng R, Yu J, et al. Plasma Exosome-derived MicroRNAs as novel biomarkers of traumatic brain injury in rats. Int J Med Sci. 2020;17(4):437–48.
CAS
PubMed
PubMed Central
Google Scholar
Gill J, Mustapic M, Diaz-Arrastia R, Lange R, Gulyani S, et al. Higher exosomal tau, amyloid-beta 42 and IL-10 are associated with mild TBIs and chronic symptoms in military personnel. Brain Inj. 2018;32(10):1277–84.
PubMed
PubMed Central
Google Scholar
Kenney K, Qu B-X, Lai C, Devoto C, Motamedi V, et al. Higher exosomal phosphorylated tau and total tau among veterans with combat-related repetitive chronic mild traumatic brain injury. Brain Inj. 2018;32(10):1276–84.
PubMed
Google Scholar
Goetzl EJ, Elahi FM, Mustapic M, Kapogiannis D, Pryhoda M, et al. Altered levels of plasma neuron-derived exosomes and their cargo proteins characterize acute and chronic mild traumatic brain injury. FASEB J. 2019;33(4):5082–8.
CAS
PubMed
PubMed Central
Google Scholar
Stern RA, Tripodis Y, Baugh CM, Fritts NG, Martin BM, et al. Preliminary study of plasma exosomal tau as a potential biomarker for chronic traumatic encephalopathy. J Alzheimer’s Dis JAD. 2016;51(4):1099–109.
CAS
Google Scholar
Nekludov M, Bellander B-M, Gryth D, Wallen H, Mobarrez F. Brain-derived microparticles in patients with severe isolated TBI. Brain Inj. 2017;31(13–14):1856–62.
CAS
PubMed
Google Scholar
Peskind ER, Kraemer B, Zhang J. Biofluid biomarkers of mild traumatic brain injury: whither plasma tau. JAMA Neurol. 2015;72(10):1103–5.
PubMed
Google Scholar
Ni H, Yang S, Siaw-Debrah F, Hu J, Wu K, et al. Exosomes derived from bone mesenchymal stem cells ameliorate early inflammatory responses following traumatic brain injury. Front Neurosci. 2019;13:14.
PubMed
PubMed Central
Google Scholar
Xu H, Jia Z, Ma K, Zhang J, Dai C, et al. Protective effect of BMSCs-derived exosomes mediated by BDNF on TBI via miR-216a-5p. Med Sci Monit. 2020;26:e920855.
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015;122(4):856–67.
PubMed
PubMed Central
Google Scholar
Liu W, Rong Y, Wang J, Zhou Z, Ge X, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J Neuroinflamm. 2020;17(1):47.
CAS
Google Scholar
Sybrandy KC, Cramer MJM, Burgersdijk C. Diagnosing cardiac contusion: old wisdom and new insights. Heart (British Cardiac Society). 2003;89(5):485–9.
CAS
Google Scholar
El-Chami MF, Nicholson W, Helmy T. Blunt cardiac trauma. J Emerg Med. 2008;35(2):127–33.
PubMed
Google Scholar
Kalbitz M, Schwarz S, Weber B, Bosch B, Pressmar J, et al. Cardiac depression in pigs after multiple trauma—characterization of posttraumatic structural and functional alterations. Sci Rep. 2017;7(1):17861.
CAS
PubMed
PubMed Central
Google Scholar
Kalbitz M, Pressmar J, Stecher J, Weber B, Weiss M, et al. The role of troponin in blunt cardiac injury after multiple trauma in humans. World J Surg. 2017;41(1):162–9.
PubMed
Google Scholar
Huber S, Biberthaler P, Delhey P, Trentzsch H, Winter H, et al. Predictors of poor outcomes after significant chest trauma in multiply injured patients: a retrospective analysis from the German Trauma Registry (Trauma Register DGU®). Scand J Trauma Resusc Emerg Med. 2014;22:52.
PubMed
PubMed Central
Google Scholar
Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac extracellular vesicles in normal and infarcted heart. Int J Mol Sci. 2016;17(1):63.
PubMed Central
Google Scholar
Waldenström A, Gennebäck N, Hellman U, Ronquist G. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS ONE. 2012;7(4):e34653.
PubMed
PubMed Central
Google Scholar
Malik ZA, Kott KS, Poe AJ, Kuo T, Chen L, et al. Cardiac myocyte exosomes: stability, HSP60, and proteomics. Am J Physiol Heart Circul Physiol. 2013;304(7):H954–65.
CAS
Google Scholar
Yu X, Deng L, Wang D, Li N, Chen X, et al. Mechanism of TNF-α autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1α, presented by exosomes. J Mol Cell Cardiol. 2012;53(6):848–57.
CAS
PubMed
Google Scholar
Gennebäck N, Hellman U, Malm L, Larsson G, Ronquist G, et al. Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes. J Extracel Vesicles. 2013;2:20167.
Google Scholar
Liu Y, Liu Z, Xie Y, Zhao C, Xu J. Serum extracellular vesicles retard H9C2 cell senescence by suppressing miR-34a expression. J Cardiovasc Transl Res. 2019;12(1):45–50.
PubMed
Google Scholar
Tavakoli Dargani Z, Singla DK. Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am J Physiol Heart Circul Physiol. 2019;317(2):H460–71.
Google Scholar
Li C, Pei F, Zhu X, Duan DD, Zeng C. Circulating microRNAs as novel and sensitive biomarkers of acute myocardial Infarction. Clin Biochem. 2012;45(10–11):727–32.
CAS
PubMed
PubMed Central
Google Scholar
Xu C, Lu Y, Pan Z, Chu W, Luo X, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci. 2007;120(Pt 17):3045–52.
CAS
PubMed
Google Scholar
He B, Xiao J, Ren A-J, Zhang Y-F, Zhang H, et al. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J Biomed Sci. 2011;18:22.
CAS
PubMed
PubMed Central
Google Scholar
Castoldi G, Di Gioia CRT, Bombardi C, Catalucci D, Corradi B, et al. MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J Cell Physiol. 2012;227(2):850–6.
CAS
PubMed
Google Scholar
Li X, Wang J, Jia Z, Cui Q, Zhang C, et al. MiR-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via Sox6 and cyclin D1. PLoS ONE. 2013;8(9):e74504.
CAS
PubMed
PubMed Central
Google Scholar
Izarra A, Moscoso I, Levent E, Cañón S, Cerrada I, et al. miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Rep. 2014;3(6):1029–42.
CAS
Google Scholar
Li S, Xiao F-Y, Shan P-R, Su L, Chen D-L, et al. Overexpression of microRNA-133a inhibits ischemia-reperfusion-induced cardiomyocyte apoptosis by targeting DAPK2. J Hum Genet. 2015;60(11):709–16.
CAS
PubMed
Google Scholar
Nie H, Pan Y, Zhou Y. Exosomal microRNA-194 causes cardiac injury and mitochondrial dysfunction in obese mice. Biochem Biophys Res Commun. 2018;503(4):3174–9.
CAS
PubMed
Google Scholar
Yarana C, Carroll D, Chen J, Chaiswing L, Zhao Y, et al. Extracellular vesicles released by cardiomyocytes in a doxorubicin-induced cardiac injury mouse model contain protein biomarkers of early cardiac injury. Clin Cancer Res. 2018;24(7):1644–53.
CAS
PubMed
Google Scholar
Cheow ESH, Cheng WC, Lee CN, de Kleijn D, Sorokin V, et al. Plasma-derived extracellular vesicles contain predictive biomarkers and potential therapeutic targets for myocardial ischemic (MI) injury. Mol Cell Proteomics. 2016;15(8):2628–40.
PubMed
PubMed Central
Google Scholar
Börger V, Bremer M, Ferrer-Tur R, Gockeln L, Stambouli O, et al. Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. Int J Mol Sci. 2017;18(7):1450.
PubMed Central
Google Scholar
Bian S, Zhang L, Duan L, Wang X, Min Y, et al. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berlin, Germany). 2014;92(4):387–97.
CAS
Google Scholar
Ma J, Zhao Y, Sun L, Sun X, Zhao X, et al. Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl Med. 2017;6(1):51–9.
CAS
PubMed
Google Scholar
Zhao Y, Sun X, Cao W, Ma J, Sun L, et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int. 2015;2015:761643.
PubMed
PubMed Central
Google Scholar
Shao L, Zhang Y, Lan B, Wang J, Zhang Z, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. Biomed Res Int. 2017;2017:4150705.
PubMed
PubMed Central
Google Scholar
Yu B, Kim HW, Gong M, Wang J, Millard RW, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol. 2015;182:349–60.
PubMed
Google Scholar
Feng Y, Huang W, Wani M, Yu X, Ashraf M. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS ONE. 2014;9(2):e88685.
PubMed
PubMed Central
Google Scholar
Eworuke E, Major JM, Gilbert McClain LI. National incidence rates for Acute Respiratory Distress Syndrome (ARDS) and ARDS cause-specific factors in the United States (2006–2014). J Crit Care. 2018;47:192–7.
PubMed
Google Scholar
Bellani G, Laffey JG, Pham T, Fan E, Brochard L, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.
CAS
PubMed
Google Scholar
Sun X, Singleton PA, Letsiou E, Zhao J, Belvitch P, et al. Sphingosine-1-phosphate receptor-3 is a novel biomarker in acute lung injury. Am J Respir Cell Mol Biol. 2012;47(5):628–36.
CAS
PubMed
PubMed Central
Google Scholar
Letsiou E, Sammani S, Zhang W, Zhou T, Quijada H, et al. Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding. Am J Respir Cell Mol Biol. 2015;52(2):193–204.
PubMed
PubMed Central
Google Scholar
Shaver CM, Woods J, Clune JK, Grove BS, Wickersham NE, et al. Circulating microparticle levels are reduced in patients with ARDS. Crit Care (Lond, Engl). 2017;21(1):120.
Google Scholar
Belizaire RM, Prakash PS, Richter JR, Robinson BR, Edwards MJ, et al. Microparticles from stored red blood cells activate neutrophils and cause lung injury after hemorrhage and resuscitation. J Am Coll Surg. 2012;214(4):648–55 (discussion 656-7).
PubMed
PubMed Central
Google Scholar
Neri T, Armani C, Pegoli A, Cordazzo C, Carmazzi Y, et al. Role of NF-kappaB and PPAR-gamma in lung inflammation induced by monocyte-derived microparticles. Eur Respir J. 2011;37(6):1494–502.
CAS
PubMed
Google Scholar
Shi Y, Luo P, Wang W, Horst K, Bläsius F, et al. M1 but not M0 extracellular vesicles induce polarization of RAW264.7 macrophages via the TLR4-NFκB pathway in vitro. Inflammation. 2020;43:1611–9.
CAS
PubMed
Google Scholar
Lee H, Zhang D, Wu J, Otterbein LE, Jin Y. Lung epithelial cell-derived microvesicles regulate macrophage migration via MicroRNA-17/221-induced integrin β(1) recycling. J Immunol (Baltimore, Md:1950). 2017;199(4):1453–64.
CAS
Google Scholar
Wang L, Liu J, Xie W, Li G, Yao L, et al. miR-425 reduction causes aberrant proliferation and collagen synthesis through modulating TGF-β/Smad signaling in acute respiratory distress syndrome. Int J Clin Exp Pathol. 2019;12(7):2604–12.
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Wu C, Gu W, Ji H, Zhu L. Serum exosomal MicroRNAs predict acute respiratory distress syndrome events in patients with severe community-acquired pneumonia. Biomed Res Int. 2019;2019:3612020.
PubMed
PubMed Central
Google Scholar
Lee H, Zhang D, Zhu Z, Dela Cruz CS, Jin Y. Epithelial cell-derived microvesicles activate macrophages and promote inflammation via microvesicle-containing microRNAs. Sci Rep. 2016;6:35250.
CAS
PubMed
PubMed Central
Google Scholar
Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 2017;196(10):1275–86.
CAS
PubMed
PubMed Central
Google Scholar
Rewa O, Bagshaw SM. Acute kidney injury-epidemiology, outcomes and economics. Nat Rev Nephrol. 2014;10(4):193–207.
CAS
PubMed
Google Scholar
Zeng X, McMahon GM, Brunelli SM, Bates DW, Waikar SS. Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals. Clin J Am Soc Nephrol. 2014;9(1):12–20.
CAS
PubMed
Google Scholar
Thongboonkerd V. Roles for exosome in various kidney diseases and disorders. Front Pharmacol. 2019;10:1655.
CAS
PubMed
Google Scholar
Sonoda H, Yokota-Ikeda N, Oshikawa S, Kanno Y, Yoshinaga K, et al. Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2009;297(4):F1006–16.
CAS
PubMed
Google Scholar
Asvapromtada S, Sonoda H, Kinouchi M, Oshikawa S, Takahashi S, et al. Characterization of urinary exosomal release of aquaporin-1 and -2 after renal ischemia-reperfusion in rats. Am J Physiol Renal Physiol. 2018;314(4):F584–601.
CAS
PubMed
Google Scholar
Nielsen S, Frøkiaer J, Marples D, Kwon T-H, Agre P, et al. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82(1):205–44.
CAS
PubMed
Google Scholar
Sonoda H, Lee BR, Park K-H, Nihalani D, Yoon J-H, et al. miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Sci Rep. 2019;9(1):4692.
PubMed
PubMed Central
Google Scholar
Tőkés-Füzesi M, Woth G, Ernyey B, Vermes I, Mühl D, et al. Microparticles and acute renal dysfunction in septic patients. J Crit Care. 2013;28(2):141–7.
PubMed
Google Scholar
Delabranche X, Boisramé-Helms J, Asfar P, Berger A, Mootien Y, et al. Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med. 2013;39(10):1695–703.
CAS
PubMed
Google Scholar
Soriano AO, Jy W, Chirinos JA, Valdivia MA, Velasquez HS, et al. Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Crit Care Med. 2005;33(11):2540–6.
PubMed
Google Scholar
Joop K, Berckmans RJ, Nieuwland R, Berkhout J, Romijn FP, et al. Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms. Thromb Haemost. 2001;85(5):810–20.
CAS
PubMed
Google Scholar
Du Cheyron D, Daubin C, Poggioli J, Ramakers M, Houillier P, et al. Urinary measurement of Na+/H+ exchanger isoform 3 (NHE3) protein as new marker of tubule injury in critically ill patients with ARF. Am J Kidney Dis. 2003;42(3):497–506.
PubMed
Google Scholar
Zhou H, Pisitkun T, Aponte A, Yuen PST, Hoffert JD, et al. Exosomal Fetuin-A identified by proteomics. A novel urinary biomarker for detecting acute kidney injury. Kidney Int. 2006;70(10):1847–57.
CAS
PubMed
PubMed Central
Google Scholar
Chen H-H, Lai P-F, Lan Y-F, Cheng C-F, Zhong W-B, et al. Exosomal ATF3 RNA attenuates pro-inflammatory gene MCP-1 transcription in renal ischemia-reperfusion. J Cell Physiol. 2014;229(9):1202–11.
CAS
PubMed
Google Scholar
Panich T, Chancharoenthana W, Somparn P, Issara-Amphorn J, Hirankarn N, et al. Urinary exosomal activating transcriptional factor 3 as the early diagnostic biomarker for sepsis-induced acute kidney injury. BMC Nephrol. 2017;18(1):10.
PubMed
PubMed Central
Google Scholar
Lv L-L, Cao Y-H, Ni H-F, Xu M, Liu D, et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Renal Physiol. 2013;305(8):F1220–7.
CAS
PubMed
Google Scholar
Cavallari C, Dellepiane S, Fonsato V, Medica D, Marengo M, et al. Online hemodiafiltration inhibits inflammation-related endothelial dysfunction and vascular calcification of uremic patients modulating miR-223 expression in plasma extracellular vesicles. J Immunol (Baltimore, Md:1950). 2019;202(8):2372–83.
CAS
Google Scholar
Xie JX, Fan X, Drummond CA, Majumder R, Xie Y, et al. MicroRNA profiling in kidney disease Plasma versus plasma-derived exosomes. Gene. 2017;627:1–8.
CAS
PubMed
PubMed Central
Google Scholar
Barutta F, Tricarico M, Corbelli A, Annaratone L, Pinach S, et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS ONE. 2013;8(11):e73798.
CAS
PubMed
PubMed Central
Google Scholar
Ranghino A, Bruno S, Bussolati B, Moggio A, Dimuccio V, et al. The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Res Ther. 2017;8(1):24.
PubMed
PubMed Central
Google Scholar
Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20(5):1053–67.
CAS
PubMed
PubMed Central
Google Scholar
Reis LA, Borges FT, Simões MJ, Borges AA, Sinigaglia-Coimbra R, et al. Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS ONE. 2012;7(9):e44092.
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Xu H, Xu W, Wang B, Wu H, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013;4(2):34.
CAS
PubMed
PubMed Central
Google Scholar
Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS ONE. 2012;7(3):e33115.
CAS
PubMed
PubMed Central
Google Scholar
Collino F, Bruno S, Incarnato D, Dettori D, Neri F, et al. AKI Recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying MicroRNAs. J Am Soc Nephrol. 2015;26(10):2349–60.
CAS
PubMed
PubMed Central
Google Scholar
Kim WR, Flamm SL, Di Bisceglie AM, Bodenheimer HC. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology (Baltimore, MD). 2008;47(4):1363–70.
CAS
Google Scholar
Royo F, Schlangen K, Palomo L, Gonzalez E, Conde-Vancells J, et al. Transcriptome of extracellular vesicles released by hepatocytes. PLoS ONE. 2013;8(7):e68693.
CAS
PubMed
PubMed Central
Google Scholar
Rodríguez-Suárez E, Gonzalez E, Hughes C, Conde-Vancells J, Rudella A, et al. Quantitative proteomic analysis of hepatocyte-secreted extracellular vesicles reveals candidate markers for liver toxicity. J Proteomics. 2014;103:227–40.
PubMed
PubMed Central
Google Scholar
Masyuk AI, Masyuk TV, LaRusso NF. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J Hepatol. 2013;59(3):621–5.
CAS
PubMed
Google Scholar
Chen Y, Zeng Z, Shen X, Wu Z, Dong Y, et al. MicroRNA-146a-5p negatively regulates pro-inflammatory cytokine secretion and cell activation in lipopolysaccharide stimulated human hepatic stellate cells through inhibition of toll-like receptor 4 signaling pathways. Int J Mol Sci. 2016;17(7):1076.
PubMed Central
Google Scholar
Witek RP, Yang L, Liu R, Jung Y, Omenetti A, et al. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells. Gastroenterology. 2009;136(1):320-330.e2.
CAS
PubMed
Google Scholar
Fonsato V, Collino F, Herrera MB, Cavallari C, Deregibus MC, et al. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells (Dayton, Ohio). 2012;30(9):1985–98.
CAS
Google Scholar
Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res. 2008;7(12):5157–66.
CAS
PubMed
PubMed Central
Google Scholar
Moratti E, Vezzalini M, Tomasello L, Giavarina D, Sorio C. Identification of protein tyrosine phosphatase receptor gamma extracellular domain (sPTPRG) as a natural soluble protein in plasma. PLoS ONE. 2015;10(3):e0119110.
PubMed
PubMed Central
Google Scholar
Bala S, Petrasek J, Mundkur S, Catalano D, Levin I, et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology (Baltimore, MD). 2012;56(5):1946–57.
CAS
Google Scholar
Eguchi A, Lazaro RG, Wang J, Kim J, Povero D, et al. Extracellular vesicles released by hepatocytes from gastric infusion model of alcoholic liver disease contain a MicroRNA barcode that can be detected in blood. Hepatology (Baltimore, MD). 2017;65(2):475–90.
CAS
Google Scholar
Kostallari E, Hirsova P, Prasnicka A, Verma VK, Yaqoob U, et al. Hepatic stellate cell-derived platelet-derived growth factor receptor-alpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology (Baltimore, MD). 2018;68(1):333–48.
CAS
Google Scholar
Holman NS, Mosedale M, Wolf KK, LeCluyse EL, Watkins PB. Subtoxic alterations in hepatocyte-derived exosomes an early step in drug-induced liver injury? Toxicol Sci. 2016;151(2):365–75.
CAS
PubMed
PubMed Central
Google Scholar
Eguchi A, Franz N, Kobayashi Y, Iwasa M, Wagner N, et al. Circulating extracellular vesicles and their miR “Barcode” differentiate alcohol drinkers with liver injury and those without liver injury in severe trauma patients. Front Med. 2019;6:30.
Google Scholar
Nojima H, Freeman CM, Schuster RM, Japtok L, Kleuser B, et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. J Hepatol. 2016;64(1):60–8.
CAS
PubMed
Google Scholar
Chen L, Charrier A, Zhou Y, Chen R, Yu B, et al. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology (Baltimore, MD). 2014;59(3):1118–29.
CAS
Google Scholar
Saha B, Momen-Heravi F, Furi I, Kodys K, Catalano D, et al. Extracellular vesicles from mice with alcoholic liver disease carry a distinct protein cargo and induce macrophage activation through heat shock protein 90. Hepatology (Baltimore, MD). 2018;67(5):1986–2000.
CAS
Google Scholar
Zhang Y-N, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release. 2016;240:332–48.
CAS
PubMed
Google Scholar
Haga H, Yan IK, Takahashi K, Matsuda A, Patel T. Extracellular vesicles from bone marrow-derived mesenchymal stem cells improve survival from lethal hepatic failure in mice. Stem Cells Transl Med. 2017;6(4):1262–72.
CAS
PubMed
PubMed Central
Google Scholar
Tan CY, Lai RC, Wong W, Dan YY, Lim S-K, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76.
PubMed
PubMed Central
Google Scholar
Liu Y, Lou G, Li A, Zhang T, Qi J, et al. AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages. EBioMedicine. 2018;36:140–50.
PubMed
PubMed Central
Google Scholar
Zhao S, Liu Y, Pu Z. Bone marrow mesenchymal stem cell-derived exosomes attenuate D-GaIN/LPS-induced hepatocyte apoptosis by activating autophagy in vitro. Drug Des Dev Ther. 2019;13:2887–97.
CAS
Google Scholar
Hyun J, Wang S, Kim J, Kim GJ, Jung Y. MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells. Sci Rep. 2015;5:14135.
CAS
PubMed
PubMed Central
Google Scholar
Fröhlich M, Lefering R, Probst C, Paffrath T, Schneider MM, et al. Epidemiology and risk factors of multiple-organ failure after multiple trauma: an analysis of 31,154 patients from the TraumaRegister DGU. J Trauma Acute Care Surg. 2014;76(4):921–7 (discussion 927-8).
PubMed
Google Scholar
Hildebrand F, Giannoudis PV, van Griensven M, Zelle B, Ulmer B, et al. Management of polytraumatized patients with associated blunt chest trauma: a comparison of two European countries. Injury. 2005;36(2):293–302.
PubMed
Google Scholar
Qiao Z, Greven J, Horst K, Pfeifer R, Kobbe P, et al. Fracture healing and the underexposed role of extracellular vesicle-based cross talk. Shock (Augusta, Ga). 2018;49(5):486–96.
Google Scholar
Ogura H, Kawasaki T, Tanaka H, Koh T, Tanaka R, et al. Activated platelets enhance microparticle formation and platelet-leukocyte interaction in severe trauma and sepsis. J Trauma. 2001;50(5):801–9.
CAS
PubMed
Google Scholar
Fujimi S, Ogura H, Tanaka H, Koh T, Hosotsubo H, et al. Increased production of leukocyte microparticles with enhanced expression of adhesion molecules from activated polymorphonuclear leukocytes in severely injured patients. J Trauma. 2003;54(1):114–9 (discussion 119-20).
PubMed
Google Scholar
Matijevic N, Wang Y-WW, Wade CE, Holcomb JB, Cotton BA, et al. Cellular microparticle and thrombogram phenotypes in the Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study: correlation with coagulopathy. Thromb Res. 2014;134(3):652–8.
CAS
PubMed
PubMed Central
Google Scholar
Potter DR, Miyazawa BY, Gibb SL, Deng X, Togaratti PP, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate pulmonary vascular permeability and lung injury induced by hemorrhagic shock and trauma. J Trauma Acute Care Surg. 2018;84(2):245–56.
PubMed
PubMed Central
Google Scholar
Miyazawa B, Trivedi A, Togarrati PP, Potter D, Baimukanova G, et al. Regulation of endothelial cell permeability by platelet-derived extracellular vesicles. J Trauma Acute Care Surg. 2019;86(6):931–42.
CAS
PubMed
PubMed Central
Google Scholar
Lopez E, Srivastava AK, Burchfield J, Wang Y-W, Cardenas JC, et al. Platelet-derived- extracellular vesicles promote hemostasis and prevent the development of hemorrhagic shock. Sci Rep. 2019;9(1):17676.
PubMed
PubMed Central
Google Scholar
Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 2019;30(4):656–73.
CAS
PubMed
PubMed Central
Google Scholar
Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108(12):5003–8.
CAS
PubMed
PubMed Central
Google Scholar
Balusu S, van Wonterghem E, de Rycke R, Raemdonck K, Stremersch S, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med. 2016;8(10):1162–83.
CAS
PubMed
PubMed Central
Google Scholar
Kumar A, Stoica BA, Loane DJ, Yang M, Abulwerdi G, et al. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J Neuroinflamm. 2017;14(1):47.
Google Scholar
Huang S, Ge X, Yu J, Han Z, Yin Z, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. FASEB J. 2018;32(1):512–28.
CAS
PubMed
Google Scholar
Long X, Yao X, Jiang Q, Yang Y, He X, et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J Neuroinflamm. 2020;17(1):89.
CAS
Google Scholar
Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig. 2014;124(5):2136–46.
CAS
PubMed
PubMed Central
Google Scholar
Wang C, Zhang C, Liu L, A X, Chen B, , et al. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther. 2017;25(1):192–204.
CAS
PubMed
PubMed Central
Google Scholar
Zhu Z, Zhang D, Lee H, Menon AA, Wu J, et al. Macrophage-derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA-221/222. J Leukoc Biol. 2017;101(6):1349–59.
CAS
PubMed
PubMed Central
Google Scholar
Rontogianni S, Synadaki E, Li B, Liefaard MC, Lips EH, et al. Proteomic profiling of extracellular vesicles allows for human breast cancer subtyping. Commun Biol. 2019;2:325.
PubMed
PubMed Central
Google Scholar
Goetzl EJ, Yaffe K, Peltz CB, Ledreux A, Gorgens K, et al. Traumatic brain injury increases plasma astrocyte-derived exosome levels of neurotoxic complement proteins. FASEB J. 2020;34(2):3359–66.
CAS
PubMed
Google Scholar