Institute of Medicine Committee on Injury Prevention and Control: Reducing the burden of injury: advancing prevention and treatment. Washington: National Academy Press, 1999.
Sakran JV, Greer SE, Werlin E, McCunn M. Care of the injured worldwide: trauma still the neglected disease of modern society. Scand J Trauma Resusc Emerg Med. 2012;15(20):64.
Article
Google Scholar
Rhee P, Joseph B, Pandit V, Aziz H, Vercruysse G, Kulvatunyou N, Friese RS. Increasing trauma deaths in the United States. Ann Surg. 2014;260(1):13–21.
Article
Google Scholar
Shakur H, Roberts I, Bautista R, Caballero J, Coats T, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.
CAS
Article
Google Scholar
Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, et al. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011;377(9771):1096–101.
CAS
Article
Google Scholar
CRASH-2 collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019; 394(10210):1713–23.
Cai J, Ribkoff J, Olson S, Raghunathan V, Al-Samkari H, DeLoughery TG, Shatzel JJ. The many roles of tranexamic acid: an overview of the clinical indications for TXA in medical and surgical patients. Eur J Haematol. 2020;104(2):79–87.
CAS
Article
Google Scholar
Aletti F, Maffioli E, Negri A, Santamaria MH, DeLano FA, Kistler EB, Schmid-Schönbein GW, Tedeschi G. Peptidomic analysis of rat plasma: proteolysis in hemorrhagic shock. Shock. 2016;45(5):540–54.
CAS
Article
Google Scholar
Bauzá-Martinez J, Aletti F, Pinto BB, Ribas V, Odena MA, Diaz R, et al. Proteolysis in septic shock patients: plasma peptidomic patterns are associated with mortality. Br J Anaesth. 2018;121(5):1065–74.
Article
Google Scholar
Penn AH, Hugli TE, Schmid-Schönbein GW. Pancreatic enzymes generate cytotoxic mediators in the intestine. Shock. 2007;27(3):296–304.
CAS
Article
Google Scholar
Kistler EB, Alsaigh T, Chang M, Schmid-Schonbein GW. Impaired small-bowel barrier integrity in the presence of lumenal pancreatic digestive enzymes leads to circulatory shock. Shock. 2012;38:262–7.
CAS
Article
Google Scholar
Chang M, Alsaigh T, Kistler EB, Schmid-Schonbein GW. Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine. PLoS ONE. 2012;7:e40087.
CAS
Article
Google Scholar
DeLano FA, Schmid-Schönbein GW. Pancreatic digestive enzyme blockade in the small intestine prevents insulin resistance in hemorrhagic shock. Shock. 2014;41(1):55–61.
CAS
Article
Google Scholar
Alsaigh T, Chang M, Richter M, Mazor R, Kistler EB. In vivo analysis of intestinal permeability following hemorrhagic shock. World J Crit Care Med. 2015;4:287–95.
Article
Google Scholar
Altshuler AE, Kistler EB, Schmid-Schonbein GW. Autodigestion: Proteolytic degradation and multiple organ failure in shock. Shock. 2016;45:483–9.
CAS
Article
Google Scholar
DeLano FA, Hoyt DB, Schmid-Schonbein GW. Pancreatic digestive enzyme blockade in the intestine increases survival after experimental shock. Sci Transl Med. 2013;5:169.
Article
Google Scholar
Santamaria M, Aletti F, Li JB, Tan A, Chang M, Leon J, Schmid-Schönbein GW, Kistler EB. Enteral tranexamic acid attenuates vasopressor resistance and changes in α1-adrenergic receptor expression in hemorrhagic shock. J Trauma Acute Care Surg. 2017;83(2):263–70.
CAS
Article
Google Scholar
Aletti F, Santamaria M, Chin K, Mazor R, Kistler EB. Enteral tranexamic acid decreases proteolytic activity in the heart in acute experimental hemorrhagic shock. J Cardiovasc Pharmacol Ther. 2019;24(5):484–93.
CAS
Article
Google Scholar
WO2017184843—Enteral Drug Delivery System.
DeLegge MH. Aspiration pneumonia: incidence, mortality, and at-risk populations. JPEN J Parenter Enteral Nutr. 2002;26(6):S19-24.
Article
Google Scholar
Gomes GF, Pisani JC, Macedo ED, Campos AC. The nasogastric feeding tube as a risk factor for aspiration and aspiration pneumonia. Curr Opin Clin Nutr Metab Care. 2003;6(3):327–33.
PubMed
Google Scholar
Blumenstein I, Shastri YM, Stein J. Gastroenteric tube feeding: techniques, problems and solutions. World J Gastroenterol. 2014;20(26):8505–24.
Article
Google Scholar
Kagan I, Hellerman-Itzhaki M, Neuman I, Glass YD, Singer P. Reflux events detected by multichannel bioimpedance smart feeding tube during high flow nasal cannula oxygen therapy and enteral feeding: First case report. J Crit Care. 2020;60:226–9.
CAS
Article
Google Scholar
Gimenes FRE, Baracioli FFLR, Medeiros AP, Prado PRD, Koepp J, Pereira MCA, Travisani CB, Rabeh SAN, Souza FB, Miasso AI. Factors associated with mechanical device-related complications in tube fed patients: A multicenter prospective cohort study. PLoS ONE. 2020;15(11):e0241849.
CAS
Article
Google Scholar
Torsy T, Saman R, Boeykens K, Duysburgh I, Van Damme N, Beeckman D. Comparison of two methods for estimating the tip position of a nasogastric feeding tube: a randomized controlled trial. Nutr Clin Pract. 2018;33(6):843–50.
Article
Google Scholar
Ritter LS, McDonagh PF. Low-flow reperfusion after myocardial ischemia enhances leukocyte accumulation in coronary microcirculation. Am J Physiol. 1997;273(3 Pt 2):H1154–65.
CAS
PubMed
Google Scholar
Ritter LS, Orozco JA, Coull BM, McDonagh PF, Rosenblum WI. Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke. Stroke. 2000;31(5):1153–61.
CAS
Article
Google Scholar
Corso CO, Okamoto S, Rüttinger D, Messmer K. Hypertonic saline dextran attenuates leukocyte accumulation in the liver after hemorrhagic shock and resuscitation. J Trauma. 1999;46(3):417–23.
CAS
Article
Google Scholar
Canale P, Squadrito F, Altavilla D, Ioculano M, Zingarelli B, Campo GM, Urna G, Sardella A, Squadrito G, Caputi AP. TCV-309, a novel platelet activating factor antagonist, inhibits leukocyte accumulation and protects against splanchnic artery occlusion shock. Agents Actions. 1994;42(3–4):128–34.
CAS
Article
Google Scholar