Skip to main content

Advertisement

Log in

Intake of NOAC is associated with hematoma expansion of intracerebral hematomas after traumatic brain injury

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

Novel oral anticoagulants are increasingly replacing vitamin K antagonists in the prophylaxis of thromboembolism as they are associated with lower incidence of spontaneous intracerebral hematomas and they do not require drug level monitoring. However, management dilemmas are apparent in patients on novel oral anticoagulants who have developed intracerebral hematomas after traumatic brain injury, since clinical experience with their reversal strategies is limited.

Methods

We retrospectively studied 90 patients with traumatic intracerebral hematomas undergoing treatment at the surgical intensive care unit of the BG University Clinic Bergmannsheil in Bochum between 2015 and 2018. We analyzed potential prognostic factors for their radiological (expansion of intracerebral hematoma) and clinical (patients’ outcome) course, in particular the role of novel oral anticoagulants.

Results

71.1% of patients were male; mean age was 67.3 years. Hematoma’s expansion occurred in 35.9% of our patients, whereas 62.2% of our cohort showed a favorable outcome, defined as Glasgow Outcome Scale 4 and 5. Intake of novel oral anticoagulants was associated with a higher rate of hematoma’s expansion compared to patients on vitamin K antagonists (p = 0.05) or to patients with normal coagulation status (p = 0.002). A younger age (p < 0.001) was identified as the sole independent prognostic factor for a more favorable outcome, after excluding our cases, who underwent a cardiopulmonary resuscitation.

Conclusions

Our data showed a higher rate of hematoma’s expansion in patients with traumatic intracerebral hematomas on novel oral anticoagulants vs. vitamin K antagonists and recommend the consideration of prophylactic reversal of the novel oral anticoagulants at admission. Larger prospective trials are warranted to conclude whether the current specific reversal protocols are safe and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singer AJ, Quinn A, Dasgupta N, Thode HC Jr. Management and outcomes of bleeding events in patients in the emergency department taking warfarin or a non-vitamin K antagonist oral anticoagulant. J Emerg Med. 2017;52(1):1e1–7e1. https://doi.org/10.1016/j.jemermed.2016.09.028.

    Article  Google Scholar 

  2. Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383(9921):955–62. https://doi.org/10.1016/S0140-6736(13)62343-0.

    Article  CAS  PubMed  Google Scholar 

  3. Huisman MV, Fanikos J. Idarucizumab and factor Xa reversal agents: role in hospital guidelines and protocols. Am J Emerg Med. 2016;34(11S):46–51. https://doi.org/10.1016/j.ajem.2016.09.053.

    Article  PubMed  Google Scholar 

  4. Abed HS, Kilborn MJ, Chen V, Sy RW. Reversal agents in the era of NOACs. J Atr Fibrillation. 2017;10(4):1634. https://doi.org/10.4022/jafib.1634.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wilson D, Seiffge DJ, Traenka C, Basir G, Purrucker JC, Rizos T, et al. Outcome of intracerebral hemorrhage associated with different oral anticoagulants. Neurology. 2017;88(18):1693–700. https://doi.org/10.1212/WNL.0000000000003886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsivgoulis G, Lioutas VA, Varelas P, Katsanos AH, Goyal N, Mikulik R, et al. Direct oral anticoagulant- vs vitamin K antagonist-related nontraumatic intracerebral hemorrhage. Neurology. 2017;89(11):1142–51. https://doi.org/10.1212/WNL.0000000000004362.

    Article  CAS  PubMed  Google Scholar 

  7. Adachi T, Hoshino H, Takagi M, Fujioka S, Saiseikai Stroke Research G. Volume and characteristics of intracerebral hemorrhage with direct oral anticoagulants in comparison with warfarin. Cerebrovasc Dis Extra. 2017;7(1):62–71. https://doi.org/10.1159/000462985.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Purrucker JC, Haas K, Rizos T, Khan S, Wolf M, Hennerici MG, et al. Early clinical and radiological course, management, and outcome of intracerebral hemorrhage related to new oral anticoagulants. JAMA Neurol. 2016;73(2):169–77. https://doi.org/10.1001/jamaneurol.2015.3682.

    Article  PubMed  Google Scholar 

  9. von der Brelie C, Doukas A, Naumann R, Dempfle A, Larsen N, Synowitz M, et al. Clinical and radiological course of intracerebral haemorrhage associated with the new non-vitamin K anticoagulants. Acta Neurochir (Wien). 2017;159(1):101–9. https://doi.org/10.1007/s00701-016-3026-7.

    Article  Google Scholar 

  10. Houben R, Schreuder F, Bekelaar KJ, Claessens D, van Oostenbrugge RJ, Staals J. Predicting prognosis of intracerebral hemorrhage (ICH): performance of ICH score is not improved by adding oral anticoagulant use. Front Neurol. 2018;9:100. https://doi.org/10.3389/fneur.2018.00100.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Coleman CI, Peacock WF, Bunz TJ, Alberts MJ. Effectiveness and safety of apixaban, dabigatran, and rivaroxaban versus warfarin in patients with nonvalvular atrial fibrillation and previous stroke or transient ischemic attack. Stroke. 2017;48(8):2142–9. https://doi.org/10.1161/STROKEAHA.117.017474.

    Article  CAS  PubMed  Google Scholar 

  12. Uccella L, Zoia C, Bongetta D, Gaetani P, Martig F, Candrian C, et al. Are antiplatelet and anticoagulants drugs a risk factor for bleeding in mild traumatic brain injury? World Neurosurg. 2018;110:e339–e34545. https://doi.org/10.1016/j.wneu.2017.10.173.

    Article  PubMed  Google Scholar 

  13. Kobayashi L, Barmparas G, Bosarge P, Brown CV, Bukur M, Carrick MM, et al. Novel oral anticoagulants and trauma: the results of a prospective american association for the surgery of trauma multi-institutional trial. J Trauma Acute Care Surg. 2017;82(5):827–35. https://doi.org/10.1097/TA.0000000000001414.

    Article  CAS  PubMed  Google Scholar 

  14. Zeeshan M, Jehan F, O'Keeffe T, Khan M, Zakaria ER, Hamidi M, et al. The novel oral anticoagulants (NOACs) have worse outcomes compared to warfarin in patients with intracranial hemorrhage after TBI. J Trauma Acute Care Surg. 2018. https://doi.org/10.1097/TA.0000000000001995.

    Article  PubMed  Google Scholar 

  15. Carney N, Totten AM, O'Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15. https://doi.org/10.1227/NEU.0000000000001432.

    Article  PubMed  Google Scholar 

  16. Yan K, Pang L, Gao H, Zhang H, Zhen Y, Ruan S, et al. The influence of sedation level guided by bispectral index on therapeutic effects for patients with severe traumatic brain injury. World Neurosurg. 2018;110:e671–e683683. https://doi.org/10.1016/j.wneu.2017.11.079.

    Article  PubMed  Google Scholar 

  17. McMillan T, Wilson L, Ponsford J, Levin H, Teasdale G, Bond M. The Glasgow outcome scale—40 years of application and refinement. Nat Rev Neurol. 2016;12(8):477–85. https://doi.org/10.1038/nrneurol.2016.89.

    Article  PubMed  Google Scholar 

  18. Gabriel EJ, Ghajar J, Jagoda A, Pons PT, Scalea T, Walters BC, et al. Guidelines for prehospital management of traumatic brain injury. J Neurotrauma. 2002;19(1):111–74. https://doi.org/10.1089/089771502753460286.

    Article  PubMed  Google Scholar 

  19. Maegele M, Schochl H, Cohen MJ. An update on the coagulopathy of trauma. Shock. 2014;41(Suppl 1):21–5. https://doi.org/10.1097/SHK.0000000000000088.

    Article  CAS  PubMed  Google Scholar 

  20. Frith D, Goslings JC, Gaarder C, Maegele M, Cohen MJ, Allard S, et al. Definition and drivers of acute traumatic coagulopathy: clinical and experimental investigations. J Thromb Haemost. 2010;8(9):1919–25. https://doi.org/10.1111/j.1538-7836.2010.03945.x.

    Article  CAS  PubMed  Google Scholar 

  21. Maegele M, Lefering R, Yucel N, Tjardes T, Rixen D, Paffrath T, et al. Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury. 2007;38(3):298–304. https://doi.org/10.1016/j.injury.2006.10.003.

    Article  PubMed  Google Scholar 

  22. Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care. 2016;20:100. https://doi.org/10.1186/s13054-016-1265-x.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The results in this paper form the doctoral thesis (University of Bonn) of MM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Gousias.

Ethics declarations

Conflict of interest

No competing financial interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markou, M., Pleger, B., Grözinger, M. et al. Intake of NOAC is associated with hematoma expansion of intracerebral hematomas after traumatic brain injury. Eur J Trauma Emerg Surg 47, 565–571 (2021). https://doi.org/10.1007/s00068-019-01228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-019-01228-9

Keywords

Navigation