Skip to main content
Log in

Prognostic potential of markers of bone turnover in delayed-healing tibial diaphyseal fractures

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Introduction

Clinical and radiographic examinations detect delayed or nonunion only after the event has occurred. Biochemical markers of bone turnover (BTMs) are promising laboratory tools that offer an early insight into the likelihood of delayed union. We hypothesized that BTMs display temporal variations following fractures and the behavior of BTMs differ between normal and delayed union of fractures.

Methods

This was a prospective study of patients with closed fracture of tibia treated with intramedullary, interlocking nailing. BTM assays (NTX, BSAP, P1NP and osteocalcin) and clinical and radiographic assessments were obtained preoperatively and postoperatively at 8,12, 24, 36 and 72 weeks. Temporal trend of elevation of serum levels of BTMs post-fracture was the primary assessment criterion and radiographic and clinical assessment of fracture union were the secondary assessment criteria.

Results

The average time for fracture union was 15.24 weeks (range 15–19 weeks). The values of both bone formation and resorption markers peaked at the eighth week following the fracture. Resorption markers returned to baseline by 36 weeks. Among the formation markers, BSAP levels showed the smallest increase and returned to baseline earlier (36 weeks) than P1NP and osteocalcin (72 weeks). P1NP showed the most dramatic change, increasing to 2.5 times the mean baseline level at 8 weeks in normal union of fractures. The levels of bone formation markers (BSAP, OC, PINP) were significantly lower in patients with delayed union. There was no significant difference in the levels of the resorption marker (NTX) between normal and delayed union patients.

Conclusion

Serial monitoring of biochemical markers of bone turnover can be used as an adjunct to clinical and radiological observations to predict delayed union

Level of evidence

Level 2 (prospective observational study).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Antonova E, Le TK, Burge R, Mershon J. (2013) Tibia shaft fractures: costly burden of nonunions. BMC Musculoskelet Disord:14(42).

  2. Dahabreh Z, Calori GM, Kanakaris NK, Nikolaou VS, Giannoudis PV. A cost analysis of treatment of tibial fracture nonunion by bone grafting or bone morphogenetic protein-7. Int Orthop. 2009;33(5):1407–14.

    Article  CAS  PubMed  Google Scholar 

  3. Aro HT, Govender S, Patel AD, Hernigou P, Perera de Gregorio A, Popescu GI, et al. Recombinant human bone morphogenetic protein-2: a randomized trial in open tibial fractures treated with reamed nail fixation. J Bone Joint Surg Am. 2011;93(9):801–8.

    Article  PubMed  Google Scholar 

  4. Bhandari M, Guyatt GH, Swiontkowski MF, Tornetta P 3rd, Sprague S, Schemitsch EH. A lack of consensus in the assessment of fracture healing among orthopaedic surgeons. J Orthop Trauma. 2002;16(8):562–6.

    Article  PubMed  Google Scholar 

  5. Webb J, Herling G, Gardner T, Kenwright J, Simpson AHRW.. Manual assessment of fracture stiffness. Injury. 1996;27(5):319 – 20.

    Article  CAS  PubMed  Google Scholar 

  6. Davis BJ, Roberts PJ, Moorcroft CI, Brown MF, Thomas PBM, Wade RH. Reliability of radiographs in defining union of internally fixed fractures. Injury. 2004;35(6):557 – 61.

    Article  CAS  PubMed  Google Scholar 

  7. Bhattacharyya T, Bouchard KA, Phadke A, Meigs JB, Kassarjian A, Salamipour H. The accuracy of computed tomography for the diagnosis of tibial nonunion. J Bone Joint Surg Am. 2006;88(4):692–7.

    PubMed  Google Scholar 

  8. Moed BR, Kim EC, van Holsbeeck M, et al. Ultrasound for the early diagnosis of tibial fracture healing after static interlocked nailing without reaming: histologic correlation using a canine model. J Orthop Trauma. 1998;12(3):200–5.

    Article  CAS  PubMed  Google Scholar 

  9. Morshed S. (2014) Current Options for Determining Fracture Union. Adv Med Volume 2014. Article ID 708574. https://doi.org/10.1155/2014/708574.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Obrant KJ, Ivaska KK, Gerdhem P, Alatalo SL, Pettersson K, Väänänen HK. Biochemical markers of bone turnover are influenced by recently sustained fracture. Bone. 2005;36(5):786–92.

    Article  CAS  PubMed  Google Scholar 

  11. Cox G, Einhorn TA, Tzioupis C, Giannoudis PV. (2010) Bone-turnover markers in fracture healing. J Bone Joint Surg Br 92:329–34.

    Google Scholar 

  12. Coulibaly MO, Sietsema DL, Burgers TA, Mason J, Williams BO, Jones CB. Recent advances in the use of serological bone formation markers to monitor callus development and fracture healing. Crit Rev Eukaryot Gene Expr. 2010;20(2):105–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Han B, Copeland M, Geiser AG, Hale LV, Harvey A, Ma YL, et al. Development of a highly sensitive, high-throughput, mass spectrometry-based assay for rat procollagen type-I N-terminal propeptide (PINP) to measure bone formation activity. J Proteome Res. 2007;6(11):4218–29.

    Article  CAS  PubMed  Google Scholar 

  14. Manolagas SC, Burton DW, Deftos LJ. 1,25-Dihydroxyvitamin D3 stimulates the alkaline phosphatase activity of osteoblast-like cells. J Biol Chem. 1981;256(14):7115–7.

    CAS  PubMed  Google Scholar 

  15. Corrales LA, Saam M, Bhandari M, Miclau T 3rd. Variability in assessment of fracture healing in orthopedic trauma studies. J Bone Joint Surg Am. 2008;90(9):1862–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. No author listed (1988) United States Food and Drug Administration (USFDA), Office of Device Evaluation, Guidance Document for Industry and CDRH Staff for the Preparation of Investigational Device Exemptions and Premarket Approval Application for Bone Growth Stimulator Devices. USFDA, Maryland, USA.

  17. Harwood PJ, Newman JB, Michael ALR. An update on fracture healing and non-union. J Orthop Trauma. 2010;24(1):9–23.

    Article  Google Scholar 

  18. Ohishi T, Takahashi M, Kushida K, Hoshino H, Tsuchikawa T, Naitoh K, Inoue T. Changes of biochemical markers during fracture healing. Arch Orthop Trauma Surg. 1998;118(3):126 – 30.

    Article  CAS  PubMed  Google Scholar 

  19. Ichimura S, Hasegawa M. Biochemical markers of bone turnover. New aspect. Changes in bone turnover markers during fracture healing. Clin Calcium. 2009;19(8):1102–8.

    CAS  PubMed  Google Scholar 

  20. Southwood LL, Frisbie DD, Kawcak CE, McIllwraith CW. (2003) Evaluation of serum biochemical markers of bone metabolism for early diagnosis of nonunion and infected nonunion fractures in rabbits. Am J Vet Res 64(6): 727–35.

    Google Scholar 

  21. Emami A, Larsson A, Petrén-Mallmin M, Larsson S. Serum bone markers after intramedullary fixed tibial fractures. Clin Orthop Relat Res. 1999;368:220–9.

    Article  Google Scholar 

  22. Mallmin H, Ljunghall S, Larsson K. (1993) Biochemical markers of bone metabolism in patients with fracture of the distal forearm. Clin Orthop Relat Res (295):259 – 63.

  23. Stoffel K, Engler H, Kuster M, Riesen W. Changes in biochemical markers after lower limb fractures. Clin Chem. 2007;53:131–4.

    Article  CAS  PubMed  Google Scholar 

  24. Klein P, Bail HJ, Schell H, Mischel R, Amthauer H, Bragulla H, et al (2004). Are bone turnover markers capable of predicting callus consolidation during bone healing?. Calcif Tissue Int 75(1):40–9.

    Article  CAS  Google Scholar 

  25. Seebeck P, Bail HJ, Exner C, et al. Do serological tissue turnover markers represent callus formation during fracture healing? Int J Bone Mineral Soc. 2005;37(5):669 – 77.

    CAS  Google Scholar 

  26. Joerring S, Jensen LT, Andersen GR, Jonhansen JS. Type I and III procollagen extension peptides in serum respond to fracture in human. Arch Orthop Trauma Surg. 1992;11:265–7.

    Article  Google Scholar 

  27. Moghaddam A, Müller U, Roth HJ, Wentzensen A, Grützner PA, Zimmermann G. TRACP 5b and CTX as osteological markers of delayed fracture healing. Injury. 2011;42(8):758 – 64.

    Article  CAS  PubMed  Google Scholar 

  28. Kurdy NM. Serology of abnormal fracture healing: the role of PIIINP, PICP, and BsALP. J Orthop Trauma. 2000;14(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  29. Granchi D, Gómez-Barrena E, Rojewski M, Rosset P, Layrolle P, Spazzoli B, Donati DM, Ciapetti G. Changes of bone turnover markers in long bone nonunions treated with a regenerative approach. Stem Cells Int. 2017. https://doi.org/10.1155/2017/3674045.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ikegami S, Kamimura M, Nakagawa H, Takahara K, Hashidate H, Uchiyama S, et al. Comparison in turnover markers during early healing of neck fractures and trochanteric fractures in elderly patients. Orthop Rev (Pavia). 2009;1(21):51 – 5.

    Google Scholar 

  31. Vasikaran S, Eastell R, Bruyère O, Foldes AJ, Garnero P, Griesmacher A, McClung M, Morris HA, Silverman S, Trenti T, Wahl DA, Cooper C, Kanis JA. IOF-IFCC Bone Marker Standards Working Group. (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22(2):391–420.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malhar Kumar.

Ethics declarations

Conflict of interest

Authors have no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Shelke, D. & Shah, S. Prognostic potential of markers of bone turnover in delayed-healing tibial diaphyseal fractures. Eur J Trauma Emerg Surg 45, 31–38 (2019). https://doi.org/10.1007/s00068-017-0879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-017-0879-2

Keywords

Navigation