Skip to main content

Advertisement

Log in

Mesenchymal stem cells in peripheral blood of severely injured patients

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

Mesenchymal stem cells (MSCs) are primarily stromal cells present in bone marrow and other tissues that are crucial for tissue regeneration and can be mobilized into peripheral blood after different types of organ damage. However, little is known about MSC appearance in blood in the setting of polytrauma.

Methods

We conducted a monocentered and longitudinal observational clinical study in 11 polytraumatized patients with an injury severity score (ISS) ≥ 24 to determine the numbers of MSCs in peripheral blood. Blood was collected from healthy volunteers and patients after polytrauma in the emergency room and 4, 12, 24, 48 h, 5 and 10 day later, and cells carrying MSC-surface markers (negative for CD45, positive for CD29, CD73, CD90, CD105, and CD166 in different combinations also employing the more stringent markers STRO1 and MSCA1) were detected and characterized using flow cytometry. Relative numbers of MSC-like cells were correlated with clinical parameters to evaluate if specific injury patterns had an influence on their presence in the blood cell pool.

Results

We were able to detect MSC marker-positive cells in both cohorts; however, the percentage of those cells present in the blood of patients during the first 10 day after injury was mostly similar to healthy volunteers, and significantly lowers starting at 4 h post trauma for one marker combination when compared to controls. Furthermore, the presence of a pelvis fracture was partly correlated with reduced relative numbers of MSC-like cells detectable in blood.

Conclusions

Polytrauma in humans was associated with partly reduced relative numbers of MSC-like cells detected in peripheral blood in the time course after injury. Further studies need to define if this reduction was due to lower mobilization from the bone marrow or to active migration to the sites of injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haagsma JA, Graetz N, Bolliger I, Naghavi M, Higashi H, Mullany EC, et al. The global burden of injury: incidence, mortality, disability-adjusted life years and time trends from the global burden of disease study 2013. Inj Prev. 2016;22:3–18.

    Article  PubMed  Google Scholar 

  2. Mokdad AH, Forouzanfar MH, Daoud F, Mokdad AA, El BC, Moradi-Lakeh M, et al. Global burden of diseases, injuries, and risk factors for young people’s health during 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2016;387:2383–401.

    Article  PubMed  Google Scholar 

  3. Burk AM, Martin M, Flierl MA, Rittirsch D, Helm M, Lampl L, et al. Early complementopathy after multiple injuries in humans. Shock. 2012;37:348–54.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  PubMed  CAS  Google Scholar 

  5. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71–4.

    Article  PubMed  CAS  Google Scholar 

  6. Fickert S, Fiedler J, Brenner RE. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res Ther. 2004;6:R422–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Fickert S, Fiedler J, Brenner RE. Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthr Cartil. 2003;11:790–800.

    Article  PubMed  CAS  Google Scholar 

  8. Klimczak A, Kozlowska U. Mesenchymal stromal cells and tissue-specific progenitor cells: their role in tissue homeostasis. Stem Cells Int. 2016;2016:4285215.

    Article  PubMed  CAS  Google Scholar 

  9. Murray IR, West CC, Hardy WR, James AW, Park TS, Nguyen A, et al. Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci. 2014;71:1353–74.

    Article  PubMed  CAS  Google Scholar 

  10. Fu X, Fang L, Li X, Cheng B, Sheng Z. Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury. Wound Repair Regen. 2006;14:325–35.

    Article  PubMed  Google Scholar 

  11. Saito T, Kuang JQ, Bittira B, Al-Khaldi A, Chiu RC. Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg. 2002;74:19–24.

    Article  PubMed  Google Scholar 

  12. Dominici M, Le BK, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. Int Soc Cell Ther Pos Statement Cytother. 2006;8:315–7.

    CAS  Google Scholar 

  13. Huber-Lang M, Wiegner R, Lampl L, Brenner RE. Mesenchymal stem cells after polytrauma: actor and target. Stem Cells Int. 2016;2016:6289825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hengartner NE, Fiedler J, Schrezenmeier H, Huber-Lang M, Brenner RE. Crucial role of IL1beta and C3a in the in vitro-response of multipotent mesenchymal stromal cells to inflammatory mediators of polytrauma. PLoS One. 2015;10:e0116772.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Granero-Molto F, Weis JA, Miga MI, Landis B, Myers TJ, O’Rear L, et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells. 2009;27:1887–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Li L, Jiang J. Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms. Front Med. 2011;5:33–9.

    Article  PubMed  Google Scholar 

  17. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA. 2003;100:8407–11.

    Article  PubMed  CAS  Google Scholar 

  18. Gore AV, Bible LE, Song K, Livingston DH, Mohr AM, Sifri ZC. Mesenchymal stem cells increase T-regulatory cells and improve healing following trauma and hemorrhagic shock. J Trauma Acute Care Surg. 2015;79:48–52.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gore AV, Bible LE, Livingston DH, Mohr AM, Sifri ZC. Can mesenchymal stem cells reverse chronic stress-induced impairment of lung healing following traumatic injury? J Trauma Acute Care Surg. 2015;78:767–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hoogduijn MJ, Verstegen MM, Engela AU, Korevaar SS, Roemeling-van RM, Merino A, et al. No evidence for circulating mesenchymal stem cells in patients with organ injury. Stem Cells Dev. 2014;23:2328–35.

    Article  PubMed  Google Scholar 

  21. Seebach C, Henrich D, Tewksbury R, Wilhelm K, Marzi I. Number and proliferative capacity of human mesenchymal stem cells are modulated positively in multiple trauma patients and negatively in atrophic nonunions. Calcif Tissue Int. 2007;80:294–300.

    Article  PubMed  CAS  Google Scholar 

  22. Alm JJ, Koivu HM, Heino TJ, Hentunen TA, Laitinen S, Aro HT. Circulating plastic adherent mesenchymal stem cells in aged hip fracture patients. J Orthop Res. 2010;28:1634–42.

    Article  PubMed  CAS  Google Scholar 

  23. Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S. Circulating osteoblast-lineage cells in humans. N Engl J Med. 2005;352:1959–66.

    Article  PubMed  CAS  Google Scholar 

  24. He Q, Wan C, Li G. Concise review: multipotent mesenchymal stromal cells in blood. Stem Cells. 2007;25:69–77.

    Article  PubMed  CAS  Google Scholar 

  25. Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG. Circulating skeletal stem cells. J Cell Biol. 2001;153:1133–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Mansilla E, Marin GH, Drago H, Sturla F, Salas E, Gardiner C, et al. Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine. Transpl Proc. 2006;38:967–9.

    Article  CAS  Google Scholar 

  27. Ramirez M, Lucia A, Gomez-Gallego F, Esteve-Lanao J, Perez-Martinez A, Foster C, et al. Mobilisation of mesenchymal cells into blood in response to skeletal muscle injury. Br J Sports Med. 2006;40:719–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Rochefort GY, Delorme B, Lopez A, Herault O, Bonnet P, Charbord P, et al. Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells. 2006;24:2202–8.

    Article  PubMed  CAS  Google Scholar 

  29. Xu L, Li G. Circulating mesenchymal stem cells and their clinical implications. J Orthop Transl. 2014;2:1–7.

    Google Scholar 

  30. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2000;2:477–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pignolo RJ, Kassem M. Circulating osteogenic cells: implications for injury, repair, and regeneration. J Bone Miner Res. 2011;26:1685–93.

    Article  PubMed  CAS  Google Scholar 

  32. Wang Y, Johnsen HE, Mortensen S, Bindslev L, Ripa RS, Haack-Sorensen M, et al. Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart. 2006;92:768–74.

    Article  PubMed  CAS  Google Scholar 

  33. Gebhard F, Huber-Lang M. Polytrauma–pathophysiology and management principles. Langenbecks Arch Surg. 2008;393:825–31.

    Article  PubMed  CAS  Google Scholar 

  34. Bernardo ME, Locatelli F, Fibbe WE. Mesenchymal stromal cells. Ann N Y Acad Sci. 2009;1176:101–17.

    Article  PubMed  CAS  Google Scholar 

  35. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 1991;78:55–62.

    PubMed  CAS  Google Scholar 

  36. Kim YH, Yoon DS, Kim HO, Lee JW. Characterization of different subpopulations from bone marrow-derived mesenchymal stromal cells by alkaline phosphatase expression. Stem Cells Dev. 2012;21:2958–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lv FJ, Tuan RS, Cheung KM, Leung VY. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014;32:1408–19.

    Article  PubMed  CAS  Google Scholar 

  38. Marlicz W, Zuba-Surma E, Kucia M, Blogowski W, Starzynska T, Ratajczak MZ. Various types of stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients with Crohn’s disease. Inflamm Bowel Dis. 2012;18:1711–22.

    Article  PubMed  Google Scholar 

  39. Starzynska T, Dabkowski K, Blogowski W, Zuba-Surma E, Budkowska M, Salata D, et al. An intensified systemic trafficking of bone marrow-derived stem/progenitor cells in patients with pancreatic cancer. J Cell Mol Med. 2013;17:792–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Blogowski W, Zuba-Surma E, Salata D, Budkowska M, Dolegowska B, Starzynska T. Peripheral trafficking of bone-marrow-derived stem cells in patients with different types of gastric neoplasms. Oncoimmunology. 2016;5:e1099798.

    Article  PubMed  CAS  Google Scholar 

  41. Ferensztajn-Rochowiak E, Kucharska-Mazur J, Samochowiec J, Ratajczak MZ, Michalak M, Rybakowski JK. The effect of long-term lithium treatment of bipolar disorder on stem cells circulating in peripheral blood. World J Biol Psychiatry 2017;18(1):54–62.

    Article  PubMed  Google Scholar 

  42. Marketou ME, Parthenakis FI, Kalyva A, Pontikoglou C, Maragkoudakis S, Kontaraki JE, et al. Increased mobilization of mesenchymal stem cells in patients with essential hypertension: the effect of left ventricular hypertrophy. J Clin Hypertens (Greenwich). 2014;16:883–8.

    Article  CAS  Google Scholar 

  43. Marketou ME, Parthenakis FI, Kalyva A, Pontikoglou C, Maragkoudakis S, Kontaraki JE, et al. Circulating mesenchymal stem cells in patients with hypertrophic cardiomyopathy. Cardiovasc Pathol. 2015;24:149–53.

    Article  PubMed  CAS  Google Scholar 

  44. Sielatycka K, Poniewierska-Baran A, Nurek K, Torbe A, Ratajczak MZ. Novel view on umbilical cord blood and maternal peripheral blood-an evidence for an increase in the number of circulating stem cells on both sides of the fetal-maternal circulation barrier. Stem Cell Rev. 2017. doi:10.1007/s12015-017-9763-z.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25:2739–49.

    Article  PubMed  CAS  Google Scholar 

  46. Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol. 2012;3:297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Naaldijk Y, Johnson AA, Ishak S, Meisel HJ, Hohaus C, Stolzing A. Migrational changes of mesenchymal stem cells in response to cytokines, growth factors, hypoxia, and aging. Exp Cell Res. 2015;338:97–104.

    Article  PubMed  CAS  Google Scholar 

  48. Hocking AM. The role of chemokines in mesenchymal stem cell homing to wounds. Adv Wound Care (New Rochelle). 2015;4:623–30.

    Article  Google Scholar 

  49. Gebhard F, Pfetsch H, Steinbach G, Strecker W, Kinzl L, Bruckner UB. Is interleukin 6 an early marker of injury severity following major trauma in humans? Arch Surg. 2000;135:291–5.

    Article  PubMed  CAS  Google Scholar 

  50. von BR, Oikonomou, Sulaj D, Mohammed A, Hotz-Wagenblatt S, Grone A. HJ et al.: CD166/ALCAM mediates proinflammatory effects of S100B in delayed type hypersensitivity. J Immunol. 2013;191:369–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Esteve D, Galitzky J, Bouloumie A, Fonta C, Buchet R, Magne D. Multiple functions of MSCA-1/TNAP in adult mesenchymal progenitor/stromal cells. Stem Cells Int. 2016;2016:1815982.

    Article  PubMed  CAS  Google Scholar 

  52. Antonioli L, Pacher P, Vizi ES, Hasko G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013;19:355–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7:e2062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a research grant from the German Ministry of Defense, Berlin, Germany (Vertragsforschungsvorhaben AZ E/U2AD/CD525/DF559).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Brenner.

Ethics declarations

Conflict of interest

Rebecca Wiegner, Nina-Emily Hengartner, Eberhard Barth, Florian Gebhard, Lorenz Lampl, Markus S. Huber-Lang, and Rolf E. Brenner declare that they have no conflict of interest.

Statement of human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiegner, R., Rudhart, NE., Barth, E. et al. Mesenchymal stem cells in peripheral blood of severely injured patients. Eur J Trauma Emerg Surg 44, 627–636 (2018). https://doi.org/10.1007/s00068-017-0849-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-017-0849-8

Keywords

Navigation