Skip to main content

Advertisement

Log in

Persistent lymphopenia is an independent predictor of mortality in critically ill emergency general surgical patients

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Introduction

Lymphopenia has been associated with poor outcome following sepsis, burns and trauma. This study was designed to establish whether lymphocyte count was associated with mortality in emergency general surgery (EGS) patients, and whether persistent lymphopenia was an independent predictor of mortality.

Methods

A retrospective review of a prospectively compiled database of adult patients requiring ICU admission between 2002 and 2013 was performed. EGS patients with acute intra-abdominal pathology and organ dysfunction were included. Lymphocyte counts obtained from the day of ICU admission through to day 7 were examined. Multivariate logistic regression models were used to determine the relationship between persistent lymphopenia and outcome. The primary outcome measure was in-hospital mortality.

Results

The study included 173 patients, of whom 135 (78 %) had a low lymphocyte count at admission to ICU and 91 % (158/173) developed lymphopenia on at least one occasion. Lymphocyte counts were lower among non-survivors compared with survivors on each day from day 2 (0.62 vs 0.81, p = 0.03) through to day 7 (0.87 vs 1.15, p < 0.01). Patients with a persistently low lymphocyte count during the study period had significantly higher mortality when compared to patients with other lymphocyte patterns (64 vs 29 %, p < 0.01). On multivariate regression analysis, persistent lymphopenia was independently associated with increased in-hospital mortality [odds ratio 3.5 (95 % CI 1.7–7.3), p < 0.01].

Conclusion

Lymphopenia is commonly observed in critically ill EGS patients. Patients with persistent lymphopenia are 3.5 times more likely to die and lymphopenia is an independent predictor of increased mortality in this patient group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cheadle WG, Pemberton RM, Robinson D, Livingston DH, Rodriguez JL, Polk HC Jr. Lymphocyte subset responses to trauma and sepsis. J Trauma. 1993;35(6):844–9.

    Article  CAS  PubMed  Google Scholar 

  2. Unsinger J, Kazama H, McDonough JS, Hotchkiss RS, Ferguson TA. Differential lymphopenia-induced homeostatic proliferation for CD4+ and CD8+ T cells following septic injury. J Leukoc Biol. 2009;85(3):382–90.

    Article  CAS  PubMed  Google Scholar 

  3. Maldonado MD, Venturoli A, Franco A, Nunez-Roldan A. Specific changes in peripheral blood lymphocyte phenotype from burn patients. Probable origin of the thermal injury-related lymphocytopenia. Burns. 1991;17(3):188–92.

    Article  CAS  PubMed  Google Scholar 

  4. Heffernan DS, Monaghan SF, Thakkar RK, Machan JT, Cioffi WG, Ayala A. Failure to normalize lymphopenia following trauma is associated with increased mortality, independent of the leukocytosis pattern. Crit Care. 2012;16(1):R12.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Drewry AM, Samra N, Skrupky LP, Fuller BM, Compton SM, Hotchkiss RS. Persistent lymphopenia after diagnosis of sepsis predicts mortality. Shock. 2014;42(5):383–91.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE Jr, Hui JJ, Chang KC, Osborne DF, Freeman BD, Cobb JP, Buchman TG, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol. 2001;166(11):6952–63.

    Article  CAS  PubMed  Google Scholar 

  7. Le Tulzo Y, Pangault C, Gacouin A, Guilloux V, Tribut O, Amiot L, Tattevin P, Thomas R, Fauchet R, Drénou B. Early circulating lymphocyte apoptosis in human septic shock is associated with poor outcome. Shock. 2002;18:487–94.

    Article  PubMed  Google Scholar 

  8. Hotchkiss RS, Swanson PE, Cobb JP, Jacobson A, Buchman TG, Karl IE. Apoptosis in lymphoid and parenchymal cells during sepsis: findings in normal and T- and B-cell-deficient mice. Crit Care Med. 1997;25(8):1298–307.

    Article  CAS  PubMed  Google Scholar 

  9. Venet F, Chung CS, Kherouf H, Geeraert A, Malcus C, Poitevin F, Bohé J, Lepape A, Ayala A, Monneret G. Increased circulating regulatory T cells (CD4(+)CD25 (+)CD127 (-)) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med. 2009;35(4):678–86.

    Article  PubMed  Google Scholar 

  10. Heidecke CD, Hensler T, Weighardt H, Zantl N, Wagner H, Siewert JR, Holzmann B. Selective defects of T lymphocyte function in patients with lethal intraabdominal infection. Am J Surg. 1999;178(4):288–92.

    Article  CAS  PubMed  Google Scholar 

  11. Monneret G, Venet F. A rapidly progressing lymphocyte exhaustion after severe sepsis. Crit Care. 2012;16(4):140.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Inoue S, Suzuki-Utsunomiya K, Okada Y, Taira T, Iida Y, Miura N, Tsuji T, Yamagiwa T, Morita S, Chiba T, et al. Reduction of immunocompetent T cells followed by prolonged lymphopenia in severe sepsis in the elderly. Crit Care Med. 2013;41(3):810–9.

    Article  PubMed  Google Scholar 

  14. Pearse RM, Harrison DA, James P, Watson D, Hinds C, Rhodes A, Grounds RM, Bennett ED. Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care. 2006;10(3):R81.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cullinane M, Gray AJ, Hargraves CM, et al. The 2003 Report of the National confidential enquiry into peri-operative deaths. London: NCEPOD; 2003.

    Google Scholar 

  16. Intensive Care National Audit & Research Centre (ICNARC), London 2010. Data derived from Case Mix Programme Database based on 170,105 admissions to 185 adult, general critical care units in NHS hospitals across England, Wales and Northern Ireland.

  17. Wickel DJ, Cheadle WG, Mercer-Jones MA, Garrison RN. Poor outcome from peritonitis is caused by disease acuity and organ failure, not recurrent peritoneal infection. Ann Surg. 1997;225:744–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gustot T. Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr Opin Crit Care. 2011;17(2):153–9.

    Article  PubMed  Google Scholar 

  19. Lord JM, Midwinter MJ, Chen Y, Belli A, Brohi K, Kovacs EJ, Koenderman L, Kubes P, Lilford RJ. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet. 2014;384:1455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheadle WG, Spain DA. The continuing challenge of intra-abdominal infection. Am J Surg. 2003;186(5A):15S–22S.

    Article  PubMed  Google Scholar 

  21. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, STROBE Initiative. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Int Med. 2007;147(8):573–7.

    Article  Google Scholar 

  22. Shafi S, Aboutanos MB, Agarwal S Jr, Brown CV, Crandall M, Feliciano DV, Guillamondegui O, Haider A, Inaba K, AAST Committee on Severity Assessment and Patient Outcomes, et al. Emergency general surgery: definition and estimated burden of disease. J Trauma Acute Care Surg. 2013;74(4):1092–7.

    Article  PubMed  Google Scholar 

  23. Vincent JL, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med. 1998;26(11):1793–800.

  24. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.

    Article  CAS  PubMed  Google Scholar 

  25. Arnold CR, Wolf J, Brunner S, Herndler-Brandstetter D, Grubeck-Loebenstein B. Gain and loss of T cell subsets in old age—age-related reshaping of the T cell repertoire. J Clin Immunol. 2011;31(2):137–46.

    Article  PubMed  Google Scholar 

  26. Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. Curr Opin Immunol. 2010;22(4):507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bandyopadhyay G, Bankey PE, Miller-Graziano CL. Trauma patients’ elevated tumor necrosis related apoptosis inducing ligand (TRAIL) contributes to increased T cell apoptosis. Clin Immunol. 2012;145(1):44–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Crary B, Hauser SL, Borysenko M, Kutz I, Hoban C, Ault KA, Weiner HL, Benson H. Epinephrine-induced changes in the distribution of lymphocyte subsets in peripheral blood of humans. J Immunol. 1983;131(3):1178–81.

    CAS  PubMed  Google Scholar 

  29. Boomer JS, Shuherk-Shaffer J, Hotchkiss RS, Green JM. A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis. Crit Care. 2012;16(3):R112.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Unsinger J, McGlynn M, Kasten KR, Hoekzema AS, Watanabe E, Muenzer JT, McDonough JS, Tshoep J, Ferguson TA, McDunn JE, et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J Immunol. 2010;184:3768–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hotchkiss RS, Chang KC, Swanson PE, Tinsley KW, Hui JJ, Klender P, Xanthoudakis S, Roy S, Black C, Grimm E, et al. Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat Immunol. 2000;1(6):496–501.

    Article  CAS  PubMed  Google Scholar 

  32. Hensler T, Hecker H, Heeg K, Heidecke CD, Bartels H, Barthlen W, Wagner H, Siewert JR, Holzmann B. Distinct mechanisms of immunosuppression as a consequence of major surgery. Infect Immun. 1997;65:2283–91.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the assistance of Jonathan Barry in acquisition of data for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Vulliamy.

Ethics declarations

Conflict of interest

Paul Vulliamy, Zane Perkins, Karim Brohi and Joana Manson declare that they have no conflict of interest relating to this manuscript.

Sources of funding

None.

This was a retrospective study, for which formal consent was not required. All data were collected as part of routine clinical care and stored according to our institution’s information governance policy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vulliamy, P.E., Perkins, Z.B., Brohi, K. et al. Persistent lymphopenia is an independent predictor of mortality in critically ill emergency general surgical patients. Eur J Trauma Emerg Surg 42, 755–760 (2016). https://doi.org/10.1007/s00068-015-0585-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-015-0585-x

Keywords

Navigation