Skip to main content

Advertisement

Log in

Biomechanical comparison of two locking plate systems for the distal tibia

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Background

Distal tibia fractures are known to be difficult to stabilize and nonunions often occur because of a relative instability of the fragments. Therefore, it was of interest to ascertain how different locking plates behave regarding stiffness and interfragmentary movement in comminuted distal tibia fractures.

Methods

A locked medial plate (AxSOS) for the medial distal tibia and a locked medial plate (LCP) for the distal medial tibia were compared biomechanically under compression and torsional load. The tibiae were osteotomized in distal intersection between 4/5 and 5/5, with a gap of 10 mm after instrumentation. For compression force, a load of 350 N was applied and for torsion, a torque of 0–10 Nm and back to 0 over −5-Nm intervals was performed. Stiffness was calculated from the machine data and interfragmentary movement was measured with an optoelectronic measurement device.

Results

Under compression load, the stiffness showed no significant differences between the AxSOS plate compared to the LCP. Significant differences were seen in the interfragmentary movement, where the LCP showed 1.03 mm compared to 0.6 mm for the AxSOS plate. In torsional testing, the AxSOS plate showed significantly higher stiffness than the LCP. The AxSOS plate and the LCP showed similar values for interfragmentary movement under torsional load.

Conclusion

The treatment of distal tibia fractures with angle-stable medial AxSOS plate showed less interfragmentary movement and higher stiffness than fracture fixation with a locked medial LCP. Even if there are no significant differences in torsional testing, plating of the distal tibia should be performed with a steel plate from the biomechanical view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hazarika S, Chakravarthy J, Cooper J. Minimally invasive locking plate osteosynthesis for fractures of the distal tibia—results in 20 patients. Injury. 2006;37(9):877–87.

    Article  PubMed  CAS  Google Scholar 

  2. Dai JP, Yan YQ, Yu YF, Zhou X. Curative effect comparison of two methods of treatment for distal tibial fractures. Zhongguo Gu Shang. 2009;22(5):361–3.

    PubMed  Google Scholar 

  3. Bahari S, Lenehan B, Khan H, McElwain JP. Minimally invasive percutaneous plate fixation of distal tibia fractures. Acta Orthop Belg. 2007;73(5):635–40.

    PubMed  Google Scholar 

  4. Yamaji T, Ando K, Wolf S, Augat P, Claes L. The effect of micromovement on callus formation. J Orthop Sci. 2001;6:571–5.

    Article  PubMed  CAS  Google Scholar 

  5. Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 2003;21:1011–7.

    Article  PubMed  Google Scholar 

  6. Bhandari M, Guyatt GH, Swiontkowski MF, Schemitsch EH. Treatment of open fractures of the shaft of the tibia. J Bone Joint Surg Br. 2001;83:62–8.

    Article  PubMed  CAS  Google Scholar 

  7. Kuner EH, Berwarth H, Lücke SV. Behandlungsprinzipien bei aseptischen Pseudarthrosen. Orthopäde. 1996;25:394–404.

    Article  PubMed  CAS  Google Scholar 

  8. Cui Y, Wang YJ, Hua QK, Cai SQ, Yan LM, Chen KJ. Biomechanical research in treating unstable Pilon fracture with anatomic plate of distal tibia. Zhongguo Gu Shang. 2009;22(7):519–21.

    PubMed  Google Scholar 

  9. Lau TW, Leung F, Chan CF, Chow SP. Wound complication of minimally invasive plate osteosynthesis in distal tibia fractures. Int Orthop. 2008;32(5):697–703.

    Article  PubMed  CAS  Google Scholar 

  10. AnyBody Technology. http://www.anybodytech.com.

  11. Morrison JB. The mechanics of the knee joint in relation to normal walking. J Biomech. 1970;3:51–61.

    Article  PubMed  CAS  Google Scholar 

  12. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34:859–71.

    Article  PubMed  CAS  Google Scholar 

  13. Andriacchi TP, Alexander EJ, Toney MK, Dyrby C, Sum J. A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J Biomech Eng. 1998;120:743–9.

    Article  PubMed  CAS  Google Scholar 

  14. Mehler D, Hansen M, Rommens PM. Biomechanische Untersuchungen Verschiedener Osteosynthesen an der proximalen Tibia: Vorstellung einer neuartigen meßgeometrischen Anordnung. Biomedizinische Technik. 2003;48:319–24.

    Article  PubMed  CAS  Google Scholar 

  15. Gaebler C, Stanzl-Tschegg S, Laube W, Vécsei V. The fatigue strength of small diameter tibial nails. Injury. 2000;32:401–5.

    Article  Google Scholar 

  16. Hansen M, Mehler D, Hessmann MH, Blum J, Rommens PM. Intramedullary stabilization of extraarticular proximal tibial fractures: a biomechanical comparison of intramedullary and extramedullary implants including a new proximal tibia nail (PTN). J Orthop Trauma. 2007;21:701–9.

    Article  PubMed  Google Scholar 

  17. Heller MO, Bergmann G, Deuretzbacher G, Dürselen L, Pohl M, Claes L, Haas NP, Duda GN. Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech. 2001;34:883–93.

    Article  PubMed  CAS  Google Scholar 

  18. Jöllenbeck T, Schönle C. Die Teilbelastung nach Knie- oder Hüft-totalendoprothese: Unmöglichkeit der Einhaltung, ihre Ursachen und Abhilfen. Z Orthop Ihre Grenzgeb. 2005;143:124–8.

    Article  Google Scholar 

  19. Hoenig M, Gao F, Kinder J, Zhang LQ, Collinge C, Merk BR. Extra-articular distal tibia fractures: a mechanical evaluation of 4 different treatment methods. J Orthop Trauma. 2010;24(1):30–5.

    Article  PubMed  Google Scholar 

  20. Augat P, Margevicius K, Simon J, Wolf S, Suger G, Claes L. Local tissue properties in bone healing: influence of size and stability of the osteotomy gap. J Orthop Res. 1998;16:475–81.

    Article  PubMed  CAS  Google Scholar 

  21. Claes L, Augat P, Suger G, Wilke HJ. Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res. 1997;15:577–84.

    Article  PubMed  CAS  Google Scholar 

  22. Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Augat P. Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res. 1998;355:S132–47.

    Article  PubMed  Google Scholar 

  23. Aro HT, Chao EY. Bone-healing patterns affected by loading, fracture fragment stability, fracture type, and fracture site compression. Clin Orthop Relat Res. 1993;293:8–17.

    PubMed  Google Scholar 

  24. Goodship AE, Watkins PE, Rigby HS, Kenwright J. The role of fixator frame stiffness in the control of fracture healing. An experimental study. J Biomech. 1993;26:1027–35.

    Article  PubMed  CAS  Google Scholar 

  25. Kenwright J, Goodship AE. Controlled mechanical stimulation in the treatment of tibial fractures. Clin Orthop Relat Res. 1989;241:36–47.

    PubMed  Google Scholar 

  26. Schildhauer TA, Robie B, Muhr G, Köller M. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials. J Orthop Trauma. 2006;20(7):476–84.

    Article  PubMed  Google Scholar 

  27. Soong M, van Leerdam R, Guitton TG, Got C, Katarincic J, Ring D. Fracture of the distal radius: risk factors for complications after locked volar plate fixation. J Hand Surg Am. 2011;36(1):3–9.

    Article  PubMed  Google Scholar 

  28. Rozental TD, Blazar PE. Functional outcome and complications after volar plating for dorsally displaced, unstable fractures of the distal radius. J Hand Surg Am. 2006;31(3):359–65.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Högel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Högel, F., Hoffmann, S., Weninger, P. et al. Biomechanical comparison of two locking plate systems for the distal tibia. Eur J Trauma Emerg Surg 38, 53–58 (2012). https://doi.org/10.1007/s00068-011-0123-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-011-0123-4

Keywords

Navigation