Skip to main content
Log in

Osthole inhibits GSK-3β/AMPK/mTOR pathway-controlled glycolysis and increases radiosensitivity of subcutaneous transplanted hepatocellular carcinoma in nude mice

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Osthole possesses anti-tumor activities. However, whether osthole can have a radiosensitization effect on hepatic cancer remains unclear. Here, an HCC-LM3 cells-inoculated subcutaneous transplanted tumor was adopted to explore the effect of osthole.

Methods

The tumor-bearing mice were treated with 100 mg/kg osthole for 12 days, 4 Gy irradiation twice, or their combination. The tumor volume and weight, lactic acid content, glycolytic enzyme activities, and protein expression of glycogen synthase kinase 3β (GSK-3β), p‑GSK-3β, mammalian target of rapamycin (mTOR), p‑mTOR, AMP-activated protein kinase (AMPK), p‑AMPK, glucose transporter 1/3, and pyruvate kinase M2 were determined. The GSK-3β-overexpressed HCC-LM3 or SK-Hep‑1 cell models were also adopted to verify the effects of osthole on expression of these proteins.

Results

The tumor volume and weight, lactic acid content, and glycolytic enzyme activities in tumor tissues were lower in the osthole + radiation group than in the radiation group. Moreover, osthole could reverse the radiation-induced increments of p‑GSK-3β/GSK-3β and p‑mTOR/mTOR protein ratios and the expression of glucose transporter 1/3 and pyruvate kinase M2 proteins in tumor tissues, and increase the protein ratio of p‑AMPK/AMPK. The effects of osthole on these glycolysis-related proteins were also observed in GSK-3β-overexpressed HCC-LM3 or SK-Hep‑1 cell models.

Conclusion

Osthole has a radiosensitizing effect on subcutaneous transplanted hepatocellular carcinoma, and its mechanism may be related to inhibition of GSK-3β/AMPK/mTOR pathway-controlled glycolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang L, Li J, Di LJ (2022) Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev 42:946–982

    Article  CAS  PubMed  Google Scholar 

  2. Emma MR, Augello G, Cusimano A, Azzolina A, Montalto G, McCubrey JA, Cervello M (2020) GSK‑3 in liver diseases: friend or foe? Biochim Biophys Acta Mol Cell Res 1867:118743

    Article  CAS  PubMed  Google Scholar 

  3. Zhang N, Liu XJ, Liu L, Deng ZS, Zeng QX, Pang WQ, Liu Y, Song DQ, Deng HB (2018) Glycogen synthase kinase-3beta inhibition promotes lysosome-dependent degradation of c‑FLIPL in hepatocellular carcinoma. Cell Death Dis 9:230

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fang GX, Zhang PL, Liu JF, Zhang X, Zhu XJ, Li R, Wang HY (2019) Inhibition of GSK-3β activity suppresses HCC malignant phenotype by inhibiting glycolysis via activating AMPK/mTOR signaling. Cancer Lett 463:11–26

    Article  CAS  PubMed  Google Scholar 

  5. Tang L, Wei F, Wu YF, He Y, Shi L, Xiong F, Gong ZJ, Guo C, Li XY, Deng H, Cao K, Zhou M, Xiang B, Li XL, Li Y, Li GY, Xiong W, Zeng ZY (2018) Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res 37:87

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vogel A, Cervantes A, Chau I, Daniele B, Llovet JM, Meyer T, Nault JC, Neumann U, Ricke J, Sangro B, Schirmacher P, Verslype C, Zech CJ, Arnold D, Martinelli E (2018) Hepatocellular carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 29(iv238):iv255

    Google Scholar 

  7. Shokoohinia Y, Jafari F, Mohammadi Z, Bazvandi L, Hosseinzadeh L, Chow N, Bhattacharyya P, Farzaei MH, Farooqi AA, Nabavi SM, Yerer MB, Bishayee A (2018) Potential anticancer properties of osthol: a comprehensive mechanistic review. Nutrients 10:36

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ashrafizadeh M, Mohammadinejad R, Samarghandian S, Yaribeygi H, Johnston TP, Sahebkar A (2020) Anti-tumor effects of osthole on different malignant tissues: A review of molecular mechanisms. Anticancer Agents Med Chem 20:918–931

    Article  CAS  PubMed  Google Scholar 

  9. Chen YQ, Song HY, Zhou ZY, Ma J, Luo ZY, Zhou Y, Wang JY, Liu S, Han XH (2022) Osthole inhibits the migration and invasion of highly metastatic breast cancer cells by suppressing ITGα3/ITGβ5 signaling. Acta Pharmacol Sin 43:1544–1555

    Article  CAS  PubMed  Google Scholar 

  10. Dai XX, Yin CT, Zhang Y, Guo GL, Zhao CG, Wang OC, Xiang YQ, Zhang XH, Liang G (2018) Osthole inhibits triple negative breast cancer cells by suppressing STAT3. J Exp Clin Cancer Res 37:322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mo Y, Wu Y, Li X, Rao H, Tian XX, Wu DN, Qiu ZP, Zheng GH, Hu JJ (2020) Osthole delays hepatocarcinogenesis in mice by suppressing AKT/FASN axis and ERK phosphorylation. Eur J Pharmacol 867:172788

    Article  CAS  PubMed  Google Scholar 

  12. Lin ZK, Liu J, Jiang GQ, Tan G, Gong P, Luo HF, Li HM, Du J, Ning Z, Xin Y, Wang ZY (2017) Osthole inhibits the tumorigenesis of hepatocellular carcinoma cells. Oncol Rep 37:1611–1618

    Article  CAS  PubMed  Google Scholar 

  13. Fan K, Huang H, Zhao Y, Xie T, Zhu ZY, Xie ML (2022) Osthole increases the sensitivity of liver cancer to sorafenib by inhibiting cholesterol metabolism. Nutr Cancer 74:3640–3650

    Article  CAS  PubMed  Google Scholar 

  14. Huang H, Xue J, Xie T, Xie ML (2023) Osthole increases the radiosensitivity of hepatoma cells by inhibiting GSK-3β/AMPK/mTOR pathway-controlled glycolysis. N‑S Arch. Pharmacol, vol 396, pp 683–692

    Google Scholar 

  15. Qi ZG, Zhao X, Zhong W, Xie ML (2016) Osthole improves glucose and lipid metabolism via modulation of PPARα/γ-mediated target gene expression in liver, adipose tissue, and skeletal muscle in fatty liver rats. Pharm Biol 54:882–888

    Article  CAS  PubMed  Google Scholar 

  16. Liu JC, Zhou L, Wang F, Cheng ZQ, Chen R (2018) Osthole decreases collagen I/III contents and their ratio in TGF-beta 1‑overexpressed mouse cardiac fibroblasts through regulating the TGF-beta/Smad signaling pathway. Chin J Nat Med 16:321–329

    CAS  PubMed  Google Scholar 

  17. Jia CH, Zhao Y, Huang H, Fan K, Xie T, Xie ML (2022) Apigenin sensitizes radiotherapy of mouse subcutaneous glioma through attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolysis. J Nutr Biochem 107:109038

    Article  CAS  PubMed  Google Scholar 

  18. Yu L, Sun YF, Li JJ, Wang Y, Zhu YX, Shi Y, Fan XJ, Zhou JD, Bao Y, Xiao J, Cao K, Cao PG (2017) Silencing the Girdin gene enhances radio-sensitivity of hepatocellular carcinoma via suppression of glycolytic metabolism. J Exp Clin Cancer Res 36:110

    Article  PubMed  PubMed Central  Google Scholar 

  19. Feng J, Li JJ, Wu LW, Yu Q, Ji J, Wu JY, Dai WQ, Guo CY (2020) Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res 39:126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng J, Dai WQ, Mao YQ, Wu LW, Li JJ, Chen K, Yu Q, Kong R, Li SN, Zhang J, Ji J, Wu JY, Mo WH, Xu XF, Guo CY (2020) Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res 39:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin YZ, Zhai H, Ouyang Y, Lu ZY, Chu CB, He QT, Cao XP (2019) Knockdown of PKM2 enhances radiosensitivity of cervical cancer cells. Cancer Cell Int 19:129

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu KX, Everdell E, Pal S, Haas-Kogan DA, Milligan MG (2021) Harnessing lactate metabolism for radiosensitization. Front Oncol 11:672339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beurel E, Blivet-Van Eggelpoel MJ, Kornprobst M, Moritz S, Delelo R, Paye F, Housset C, Desbois-Mouthon C (2009) Glycogen synthase kinase-3 inhibitors augment TRAIL-induced apoptotic death in human hepatoma cells. Biochem Pharmacol 77:54–65

    Article  CAS  PubMed  Google Scholar 

  24. Mamaghani S, Simpson CD, Cao PM, Cheung M, Chow S, Bandarchi B, Schimmer AD, Hedley DW (2012) Glycogen synthase kinase‑3 inhibition sensitizes pancreatic cancer cells to TRAIL-induced apoptosis. Plos One 7:e41102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pal K, Cao Y, Gaisina IN, Bhattacharya S, Dutta SK, Wang EF, Gunosewoyo H, Kozikowski AP, Billadeau DD, Mukhopadhyay D (2014) Inhibition of GSK‑3 induces differentiation and impaired glucose metabolism in renal cancer. Mol Cancer Ther 13:285–296

    Article  CAS  PubMed  Google Scholar 

  26. Lin JT, Song T, Li C, Mao WF (2020) GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim Biophys Acta Mol Cell Res 1867:118659

    Article  CAS  PubMed  Google Scholar 

  27. Kitano A, Shimasaki T, Chikano Y, Nakada M, Hirose M, Higashi T, Ishigaki Y, Endo Y, Takino T, Sato H, Sai Y, Miyamoto K, Motoo Y, Kawakami K, Minamoto T (2013) Aberrant glycogen synthase kinase 3beta is involved in pancreatic cancer cell invasion and resistance to therapy. Plos One 8:e55289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abrams SL, Akula SM, Meher AK, Steelman LS, Gizak A, Duda P, Rakus D, Martelli AM, Ratti S, Cocco L, Montalto G, Cervello M, Ruvolo P, Libra M, Falzone L, Candido S, McCubrey JA (2021) GSK-3β can regulate the sensitivity of MIA-PaCa‑2 pancreatic and MCF‑7 breast cancer cells to chemotherapeutic drugs, targeted therapeutics and nutraceuticals. Cells 10:816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park W, Park S, Song G, Lim W (2019) Inhibitory effects of osthole on human breast cancer cell progression via induction of cell cycle arrest, mitochondrial dysfunction, and ER stress. Nutrients 11:2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu B, Jin JB, Zhang ZY, Zuo L, Jiang MX, Xie CF (2019) Shikonin exerts antitumor activity by causing mitochondrial dysfunction in hepatocellular carcinoma through PKM2-AMPK-PGC1 alpha signaling pathway. Biochm. Cell Biol 97:397–405

    Google Scholar 

  31. Zhang JH, Zhang YH, Mo F, Patel G, Butterworth K, Shao CL, Prise KM (2021) The roles of HIF‑1 alpha in radiosensitivity and radiation-induced bystander effects under hypoxia. Front Cell Dev Biol 9:637454

    Article  PubMed  PubMed Central  Google Scholar 

  32. Meng W, Xie BH, Yang Q, Jia CC, Tang H, Zhang XM, Zhang Y, Zhang JW, Li HP, Fu BS (2019) Minichromosome maintenance 3 promotes hepatocellular carcinoma radioresistance by activating the NF‑B pathway. J Exp Clin Cancer Res 38:263

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu WL, Gao M, Tzen KY, Tsai CL, Hsu FM, Cheng AL, Cheng JCH (2014) Targeting phosphatidylinositide 3‑kinase/Akt pathway by BKM120 for radiosensitization in hepatocellular carcinoma. Oncotarget 5:3662–3672

    Article  PubMed  PubMed Central  Google Scholar 

  34. Che YL, Li J, Li ZJ, Li J, Wang S, Yan Y, Zou K, Zou LJ (2018) Osthole enhances antitumor activity and irradiation sensitivity of cervical cancer cells by suppressing ATM/NF-κB signaling. Oncol Rep 40:737–747

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Peng KY, Chou TC (2022) Osthole exerts inhibitory effects on hypoxic colon cancer cells via EIF2 alpha phosphorylation-mediated apoptosis and regulation of HIF‑1 alpha. Am J Chinese Med 50:621–637

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Research Fund of Nanjing Medical University (NMUB2020254), China.

Author information

Authors and Affiliations

Authors

Contributions

HH and JX performed the animal and cell experiments. HH collected and analyzed the results and wrote the draft of the manuscript. JX revised and edited the manuscript. MLX and TX designed the experiments and reviewed the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Mei-Lin Xie or Tao Xie.

Ethics declarations

Conflict of interest

H. Huang, J. Xue, M.-L. Xie and T. Xie declare that they have no competing interests.

Ethical standards

The animal study was conducted in accordance with the guidelines for the use and care of experimental animals of Soochow University and approved by the University Animal Ethics Committee (certificate no. 202103A0994; approval date 8 April 2021).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hui Huang and Jie Xue contributed equally to this study.

Data availability

Data will be made available from the corresponding authors upon reasonable request.

Supplementary Information

Fig. S1

The results of full-length sequencing of GSK-3β

Fig. S2

GSK-3β protein expression in pcDNA3.1(+)-GSK-3β plasmid-transfected HCC-LM3 cells (A) or SK-Hep-1 cells (B). Data are presented as the mean ± SD of three different independent experiments. **P < 0.01 vs. the pcDNA3.1(+)-NC group. There was no obvious difference between the control group and the pcDNA3.1(+)-NC group

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Xue, J., Xie, ML. et al. Osthole inhibits GSK-3β/AMPK/mTOR pathway-controlled glycolysis and increases radiosensitivity of subcutaneous transplanted hepatocellular carcinoma in nude mice. Strahlenther Onkol 200, 444–452 (2024). https://doi.org/10.1007/s00066-023-02173-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-023-02173-8

Keywords

Navigation