Skip to main content
Log in

Institutional experience report on the target contouring workflow in the radiotherapy department for stereotactic arrhythmia radioablation delivered on conventional linear accelerators

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

In stereotactic arrhythmia radioablation (STAR), the target is defined using multiple imaging studies and a multidisciplinary team consisting of electrophysiologist, cardiologist, cardiac radiologist, and radiation oncologist collaborate to identify the target and delineate it on the imaging studies of interest. This report describes the workflow employed in our radiotherapy department to transfer the target identified based on electrophysiology and cardiology imaging to the treatment planning image set.

Methods

The radiotherapy team was presented with an initial target in cardiac axes orientation, contoured on a wideband late gadolinium-enhanced (WB-LGE) cardiac magnetic resonance (CMR) study, which was subsequently transferred to the computed tomography (CT) scan used for treatment planning—i.e., the average intensity projection (AIP) image set derived from a 4D CT—via an axial CMR image set, using rigid image registration focused on the target area. The cardiac and the respiratory motion of the target were resolved using ciné-CMR and 4D CT imaging studies, respectively.

Results

The workflow was carried out for 6 patients and resulted in an internal target defined in standard anatomical orientation that encompassed the cardiac and the respiratory motion of the initial target.

Conclusion

An image registration-based workflow was implemented to render the STAR target on the planning image set in a consistent manner, using commercial software traditionally available for radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T, Field ME, Fonarow GC, Gillis AM, Granger CB, Hammill SC, Hlatky MA, Joglar JA, Kay GN, Matlock DD, Myerburg RJ, Page RL (2018) 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation 138(13):e272–e391. https://doi.org/10.1161/CIR.0000000000000549

    Article  PubMed  Google Scholar 

  2. Cuculich PS, Schill MR, Kashani R, Mutic S, Lang A, Cooper D, Faddis M, Gleva M, Noheria A, Smith TW, Hallahan D, Rudy Y, Robinson CG (2017) Noninvasive cardiac radiation for ablation of ventricular tachycardia. N Engl J Med 377(24):2325–2336. https://doi.org/10.1056/nejmoa1613773

    Article  PubMed  PubMed Central  Google Scholar 

  3. Peichl P, Sramko M, Cvek J, Kautzner J (2021) A case report of successful elimination of recurrent ventricular tachycardia by repeated stereotactic radiotherapy: The importance of accurate target volume delineation. Eur Heart J Case Rep. https://doi.org/10.1093/ehjcr/ytaa516

    Article  PubMed  Google Scholar 

  4. Mayinger M, Boda-Heggemann J, Mehrhof F, Krug D, Hohmann S, Xie J, Ehrbar S, Kovacs B, Merten R, Grehn M, Zaman A, Fleckenstein J, Kaestner L, Buergy D, Rudic B, Kluge A, Boldt LH, Dunst J, Bonnemeier H, Schweikard A (2023) Quality assurance process within the RAdiosurgery for VENtricular TAchycardia (RAVENTA) trial for the fusion of electroanatomical mapping and radiotherapy planning imaging data in cardiac radioablation. Phys Imaging Radiat Oncol. https://doi.org/10.1016/j.phro.2022.12.003

    Article  PubMed  Google Scholar 

  5. Loo BW, Soltys SG, Wang L, Lo A, Fahimian BP, Iagaru A, Norton L, Shan X, Gardner E, Fogarty T, Maguire P, Al-Ahmad A, Zei P (2015) Stereotactic ablative radiotherapy for the treatment of refractory cardiac ventricular arrhythmia. Circulation 8(3):748–750. https://doi.org/10.1161/CIRCEP.115.002765

    Article  PubMed  Google Scholar 

  6. Wang L, Fahimian B, Soltys SG, Zei P, Lo A, Gardner EA, Maguire PJ, Loo BW Jr. (2016) Stereotactic arrhythmia radioablation (STAR) of ventricular tachycardia: a treatment planning study. Cureus 8(7):e694. https://doi.org/10.7759/cureus.694

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jumeau R, Ozsahin M, Schwitter J, Vallet V, Duclos F, Zeverino M, Moeckli R, Pruvot E, Bourhis J (2018) Rescue procedure for an electrical storm using robotic non-invasive cardiac radio-ablation. Radiother Oncol 128(2):189–191. https://doi.org/10.1016/J.RADONC.2018.04.025

    Article  PubMed  Google Scholar 

  8. Robinson CG, Samson PP, Moore KMS, Hugo GD, Knutson N, Mutic S, Goddu SM, Lang A, Cooper DH, Faddis M, Noheria A, Smith TW, Woodard PK, Gropler RJ, Hallahan DE, Rudy Y, Cuculich PS (2019) Phase I/II trial of electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia. Circulation 139(3):313–321. https://doi.org/10.1161/CIRCULATIONAHA.118.038261

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105(4):539–542

    Article  PubMed  Google Scholar 

  10. Neuwirth R, Cvek J, Knybel L, Jiravsky O, Molenda L, Kodaj M, Fiala M, Peichl P, Feltl D, Januška J, Hecko J, Kautzner J (2019) Stereotactic radiosurgery for ablation of ventricular tachycardia. Europace 21(7):1088–1095. https://doi.org/10.1093/europace/euz133

    Article  PubMed  Google Scholar 

  11. Lloyd MS, Wight J, Schneider F, Hoskins M, Attia T, Escott C, Lerakis S, Higgins KA (2020) Clinical experience of stereotactic body radiation for refractory ventricular tachycardia in advanced heart failure patients. Heart Rhythm 17(3):415–422. https://doi.org/10.1016/J.HRTHM.2019.09.028

    Article  PubMed  Google Scholar 

  12. Hohmann S, Henkenberens C, Zormpas C, Christiansen H, Bauersachs J, Duncker D, Veltmann C (2020) A novel open-source software-based high-precision workflow for target definition in cardiac radioablation. Cardiovasc electrophysiol 31(10):2689–2695. https://doi.org/10.1111/jce.14660

    Article  Google Scholar 

  13. Blanck O, Buergy D, Vens M, Eidinger L, Zaman A, Krug D, Rudic B, Boda-Heggemann J, Giordano FA, Boldt LH, Mehrhof F, Budach V, Schweikard A, Olbrich D, König IR, Siebert FA, Vonthein R, Dunst J, Bonnemeier H (2020) Radiosurgery for ventricular tachycardia: preclinical and clinical evidence and study design for a German multi-center multi-platform feasibility trial (RAVENTA). Clin Res Cardiol 109(11):1319–1332. https://doi.org/10.1007/s00392-020-01650-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gianni C, Rivera D, Burkhardt JD, Pollard B, Gardner E, Maguire P, Zei PC, Natale A, Al-Ahmad A (2020) Stereotactic arrhythmia radioablation for refractory scar-related ventricular tachycardia. Heart Rhythm 17(8):1241–1248. https://doi.org/10.1016/j.hrthm.2020.02.036

    Article  PubMed  Google Scholar 

  15. Krug D, Blanck O, Demming T, Dottermusch M, Koch K, Hirt M, Kotzott L, Zaman A, Eidinger L, Siebert FA, Dunst J, Bonnemeier H (2020) Stereotactic body radiotherapy for ventricular tachycardia (cardiac radiosurgery): first-in-patient treatment in Germany. Strahlenther Onkol 196(1):23–30. https://doi.org/10.1007/s00066-019-01530-w

    Article  PubMed  Google Scholar 

  16. Chin R, Hayase J, Hu P, Cao M, Deng J, Ajijola O, Do D, Vaseghi M, Buch E, Khakpour H, Fujimura O, Krokhaleva Y, Macias C, Sorg J, Gima J, Pavez G, Boyle NG, Steinberg M, Shivkumar K, Bradfield JS (2021) Non-invasive stereotactic body radiation therapy for refractory ventricular arrhythmias: an institutional experience. J Interv Cardiac Electrophysiol 61(3):535–543. https://doi.org/10.1007/s10840-020-00849-0

    Article  Google Scholar 

  17. Qian PC, Quadros K, Aguilar M, Wei C, Boeck M, Bredfeldt J, Cochet H, Blankstein R, Mak R, Sauer WH, Tedrow UB, Zei PC (2022) Substrate modification using stereotactic radioablation to treat refractory ventricular tachycardia in patients with Ischemic cardiomyopathy. JACC Clin Electrophysiol 8(1):49–58. https://doi.org/10.1016/J.JACEP.2021.06.016

    Article  PubMed  Google Scholar 

  18. Ho G, Atwood TF, Bruggeman AR, Moore KL, McVeigh E, Villongco CT, Han FT, Hsu JC, Hoffmayer KS, Raissi F, Lin GY, Schricker A, Woods CE, Cheung JP, v. Taira A, McCulloch A, Birgersdotter-Green U, Feld GK, Mundt AJ, Krummen DE (2021) Computational ECG mapping and respiratory gating to optimize stereotactic ablative radiotherapy workflow for refractory ventricular tachycardia. Heart Rhythm O2 2(5):511–520. https://doi.org/10.1016/j.hroo.2021.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee J, Bates M, Shepherd E, Riley S, Henshaw M, Metherall P, Daniel J, Blower A, Scoones D, Wilkinson M, Richmond N, Robinson C, Cuculich P, Hugo G, Seller N, McStay R, Child N, Thornley A, Kelland N, Hatton M (2021) Cardiac stereotactic ablative radiotherapy for control of refractory ventricular tachycardia: Initial UK multicentre experience. Open Heart 8(2):e1770. https://doi.org/10.1136/openhrt-2021-001770

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gerard IJ, Bernier M, Hijal T, Kopek N, Pater P, Stosky J, Stroian G, Toscani B, Alfieri J (2021) Stereotactic arrhythmia radioablation for ventricular tachycardia: single center first experiences. Adv Radiat Oncol 6(4):100702. https://doi.org/10.1016/J.ADRO.2021.100702

    Article  PubMed  PubMed Central  Google Scholar 

  21. Glicksman RM, Bhaskaran A, Nanthakumar K, Lindsay P, Coolens C, Conroy L, Letourneau D, Lok BH, Giuliani M, Hope A (2021) Implementation of cardiac stereotactic radiotherapy: from literature to the linac. Cureus 13(2):e13606. https://doi.org/10.7759/cureus.13606

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carbucicchio, C., Jereczek-Fossa, B. A., Andreini, & D., Catto, V., Piperno, & G., Conte, E., Cattani, F., Rondi, E., Vigorito, & S., Piccolo, & C., Bonomi, & A., Gorini, & A., Pepa, M., Mushtaq, & S., Fassini, & G., Moltrasio, & M., Tundo, & F., Marvaso, & G., Veglia, F., … Tondo, & C. (2021). STRA-MI-VT (STereotactic RadioAblation by Multimodal Imaging for Ventricular Tachycardia): rationale and design of an Italian experimental prospective study. Journal of Interventional Cardiac Electrophysiology, 61, 583–593. https://doi.org/10.1007/s10840-020-00855-2/Published

  23. Huang SH, Wu YW, Shueng PW, Wang SY, Tsai MC, Liu YH, Chuang WP, Lin HH, Tien HJ, Yeh HP, Hsieh CH (2022) Case report: stereotactic body radiation therapy with 12 Gy for silencing refractory ventricular tachycardia. Front Cardiovasc Med 9:973105. https://doi.org/10.3389/fcvm.2022.973105

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cozzi S, Bottoni N, Botti A, Trojani V, Alì E, Finocchi Ghersi S, Cremaschi F, Iori F, Ciammella P, Iori M, Iotti C (2022) The use of cardiac stereotactic radiation therapy (SBRT) to manage ventricular tachycardia: a case report, review of the literature and technical notes. J Pers Med 12(11):1783–1794. https://doi.org/10.3390/jpm12111783

    Article  PubMed  PubMed Central  Google Scholar 

  25. Molon G, Giaj-Levra N, Costa A, Bonapace S, Cuccia F, Marinelli A, Trachanas K, Sicignano G, Alongi F (2022) Stereotactic ablative radiotherapy in patients with refractory ventricular tachyarrhythmia. Eur Heart J Suppl 24:C248–C253. https://doi.org/10.1093/eurheartj/suac016

    Article  PubMed  PubMed Central  Google Scholar 

  26. Santos-Ortega A, Rivas-Gándara N, Pascual-González G, Seoane A, Granado R, Reyes V (2022) Multimodality imaging fusion to guide stereotactic radioablation for refractory complex ventricular tachycardia. HeartRhythm Case Reports 8(12):836–839. https://doi.org/10.1016/J.HRCR.2022.09.008

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kurzelowski R, Latusek T, Miszczyk M, Jadczyk T, Bednarek J, Sajdok M, Gołba KS, Wojakowski W, Wita K, Gardas R, Dolla Ł, Bekman A, Grza̧dziel A, Blamek S (2022) Radiosurgery in treatment of ventricular tachycardia—initial experience within the Polish SMART-VT trial. Front Cardiovasc Med 9:874661. https://doi.org/10.3389/fcvm.2022.874661

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bhakta D, Miller JM (2008) Principles of electroanatomic mapping. Indian Pacing Electrophysiol J 8(1):32–50

    PubMed  PubMed Central  Google Scholar 

  29. del Carpio Munoz F, Buescher TL, Asirvatham SJ (2010) Three-dimensional mapping of cardiac arrhythmias what do the colors really mean? Circ Arrhythmia Electrophysiol 3(6):e6–e11. https://doi.org/10.1161/CIRCEP.110.960161

    Article  Google Scholar 

  30. Rudy Y (2021) Noninvasive mapping of repolarization with electrocardiographic imaging. J Am Heart Assoc 10(9):e21396. https://doi.org/10.1161/JAHA.121.021396

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tian Y, Wang Z, Ge H, Zhang T, Kelsey C, Yoo D, Yin F‑F (2012) Dosimetric comparison of treatment plans based on free breathing, maximum, and average intensity projection CTs for lung cancer SBRT. Med Phys 39(5):2754–2760. https://doi.org/10.1118/1.4705353

    Article  PubMed  Google Scholar 

  32. Krug D, Blanck O, Andratschke N, Guckenberger M, Jumeau R, Mehrhof F, Boda-Heggemann J, Seidensaal K, Dunst J, Pruvot E, Scholz E, Saguner AM, Rudic B, Boldt LH, Bonnemeier H (2021) Recommendations regarding cardiac stereotactic body radiotherapy for treatment refractory ventricular tachycardia. Heart Rhythm 18(12):2137–2145. https://doi.org/10.1016/j.hrthm.2021.08.004

    Article  PubMed  Google Scholar 

  33. Wang KC, Kohli M, Carrino JA (2014) Technology standards in imaging: a practical overview. J Am Coll Radiol 11(12):1251–1259. https://doi.org/10.1016/J.JACR.2014.09.014

    Article  PubMed  Google Scholar 

  34. Boda-Heggemann J, Blanck O, Mehrhof F, Ernst F, Buergy D, Fleckenstein J, Tülümen E, Krug D, Siebert FA, Zaman A, Kluge AK, Parwani AS, Andratschke N, Mayinger MC, Ehrbar S, Saguner AM, Celik E, Baus WW, Stauber A, Rudic B (2021) Interdisciplinary Clinical Target Volume Generation for Cardiac Radioablation: Multicenter Benchmarking for the RAdiosurgery for VENtricular TAchycardia (RAVENTA) Trial. Int J Radiat Oncol 110(3):745–756. https://doi.org/10.1016/J.IJROBP.2021.01.028

    Article  Google Scholar 

  35. van der Ree MH, Visser J, Planken RN, Dieleman EMT, Boekholdt SM, v. Balgobind B, Postema PG (2022) Standardizing the cardiac radioablation targeting workflow: enabling semi-automated angulation and segmentation of the heart according to the American heart association segmented model. Adv Radiat Oncol 7(4):100928. https://doi.org/10.1016/j.adro.2022.100928

    Article  PubMed  PubMed Central  Google Scholar 

  36. Porta-Sánchez A, Magtibay K, Nayyar S, Bhaskaran A, Lai PFH, Massé S, Labos C, Qiang B, Romagnuolo R, Masoudpour H, Biswas L, Ghugre N, Laflamme M, Deno DC, Nanthakumar K (2019) Omnipolarity applied to equi-spaced electrode array for ventricular tachycardia substrate mapping. Europace 21(5):813–821. https://doi.org/10.1093/europace/euy304

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kellman P, Larson AC, Hsu LY, Chung YC, Simonetti OP, McVeigh ER, Arai AE (2005) Motion-corrected free-breathing delayed enhancement imaging of myocardial infarction. Magn Reson Med 53(1):194–200. https://doi.org/10.1002/mrm.20333

    Article  PubMed  PubMed Central  Google Scholar 

  38. Singh A, Kawaji K, Goyal N, Nazir NT, Beaser A, O’Keefe-Baker V, Addetia K, Tung R, Hu P, Mor-Avi V, Patel AR (2019) Feasibility of cardiac magnetic resonance wideband protocol in patients with implantable cardioverter defibrillators and its utility for defining scar. Am J Cardiol 123(8):1329–1335. https://doi.org/10.1016/J.AMJCARD.2019.01.018

    Article  PubMed  PubMed Central  Google Scholar 

  39. Patel HN, Wang S, Rao S, Singh A, Landeras L, Besser SA, Carter S, Mishra S, Nishimura T, Shatz DY, Tung R, Nayak H, Kawaji K, Mor-Avi V, Patel AR (2023) Impact of wideband cardiac magnetic resonance on diagnosis, decision-making and outcomes in patients with implantable cardioverter defibrillators. Eur Heart J Cardiovasc Imaging 24(2):181–189. https://doi.org/10.1093/ehjci/jeac227

    Article  PubMed  Google Scholar 

  40. Rashid S, Rapacchi S, Vaseghi M, Tung R, Shivkumar K, Finn JP, Hu P (2014) Improved late gadolinium enhancement MR imaging for patients with implanted cardiac devices. Radiology 270(1):269–274. https://doi.org/10.1148/radiol.13130942

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ledesma-Carbayo MJ, Kellman P, Arai A (2007) Motion corrected free-breathing delayed-enhancement imaging of myocardial infarction using nonrigid registration. J Magn Reson Imaging 26(1):184–190. https://doi.org/10.1002/jmri.2095 (Erratum in: Journal of Magnetic Resonance Imaging, 2008, 27(6):1468. Hsu, Li-Yueh.)

    Article  PubMed  Google Scholar 

  42. Sohn JJ, Guy CL, Datsang R, Kim S (2021) Touchless compression using shallow kinetics induced by metronome (SKIM). Int J Radiat Oncol 111(3):S48. https://doi.org/10.1016/J.IJROBP.2021.07.12943

    Article  Google Scholar 

  43. Grégoire V, Mackie TR (2011) State of the art on dose prescription, reporting and recording in intensity-modulated radiation therapy (ICRU report no. 83). Cancer Radiother 15(6–7):555–559. https://doi.org/10.1016/j.canrad.2011.04.003

    Article  PubMed  Google Scholar 

  44. Mahida S, Sacher F, Dubois R, Sermesant M, Bogun F, Haïssaguerre M, Jaïs P, Cochet H (2017) Cardiac imaging in patients with ventricular tachycardia. Circulation 136(25):2491–2507. https://doi.org/10.1161/CIRCULATIONAHA.117.029349

    Article  PubMed  Google Scholar 

  45. Brett CL, Cook JA, Aboud AA, Karim R, Shinohara ET, Stevenson WG (2021) Novel workflow for conversion of catheter-based electroanatomic mapping to DICOM imaging for noninvasive radioablation of ventricular tachycardia. Pract Radiat Oncol 11(1):84–88. https://doi.org/10.1016/j.prro.2020.04.006

    Article  PubMed  Google Scholar 

  46. Grothues F, Wolfram O, Fantoni C, Boenigk H, Götte A, Tempelmann C, Klein HU, Auricchio A (2006) Volume measurement by CARTOTM compared with cardiac magnetic resonance. Europace 8(1):37–41. https://doi.org/10.1093/europace/euj016

    Article  CAS  PubMed  Google Scholar 

  47. Boas FE, Fleischmann D (2012) CT artifacts: causes and reduction techniques. Imaging Med 4(2):229–240

    Article  Google Scholar 

  48. Dickfeld T, Lei P, Dilsizian V, Jeudy J, Dong J, Voudouris A, Peters R, Saba M, Shekhar R, Shorofsky S (2008) Integration of three-dimensional scar maps for ventricular tachycardia ablation with positron emission tomography-computed tomography. JACC Cardiovasc Imaging 1(1):73–82. https://doi.org/10.1016/J.JCMG.2007.10.001

    Article  PubMed  Google Scholar 

  49. Tian J, Smith MF, Chinnadurai P, Dilsizian V, Turgeman A, Abbo A, Gajera K, Xu C, Plotnick D, Peters R, Saba M, Shorofsky S, Dickfeld T (2009) Clinical application of PET/CT fusion imaging for three-dimensional myocardial scar and left ventricular anatomy during ventricular tachycardia ablation. J Cardiovasc Electrophysiol 20(6):567–604. https://doi.org/10.1111/j.1540-8167.2008.01377.x

    Article  PubMed  Google Scholar 

  50. Fahmy TS, Wazni OM, Jaber WA, Walimbe V, di Biase L, Elayi CS, DiFilippo FP, Young RB, Patel D, Riedlbauchova L, Corrado A, Burkhardt JD, Schweikert RA, Arruda M, Natale A (2008) Integration of positron emission tomography/computed tomography with electroanatomical mapping: A novel approach for ablation of scar-related ventricular tachycardia. Heart Rhythm 5(11):1538–1545. https://doi.org/10.1016/j.hrthm.2008.08.020

    Article  PubMed  Google Scholar 

  51. Klein T, Abdulghani M, Smith M, Huang R, Asoglu R, Remo BF, Turgeman A, Mesubi O, Sidhu S, Synowski S, Saliaris A, See V, Shorofsky S, Chen W, Dilsizian V, Dickfeld T (2015) Three-dimensional 123I-meta-iodobenzylguanidine cardiac innervation maps to assess substrate and successful ablation sites for ventricular tachycardia: feasibility study for a novel paradigm of innervation imaging. Circ Arrhythm Electrophysiol 8(3):583–591. https://doi.org/10.1161/CIRCEP.114.002105

    Article  PubMed  Google Scholar 

  52. White JA, Fine NM, Gula L, Yee R, Skanes A, Klein G, Leong-Sit P, Warren H, Thompson T, Drangova M, Krahn A (2012) Utility of cardiovascular magnetic resonance in identifying substrate for malignant ventricular arrhythmias. Circ Cardiovasc Imaging 5(1):12–20. https://doi.org/10.1161/CIRCIMAGING.111.966085

    Article  PubMed  Google Scholar 

  53. Desjardins B, Crawford T, Good E, Oral H, Chugh A, Pelosi F, Morady F, Bogun F (2009) Infarct architecture and characteristics on delayed enhanced magnetic resonance imaging and electroanatomic mapping in patients with postinfarction ventricular arrhythmia. Heart Rhythm 6(5):644–651. https://doi.org/10.1016/J.HRTHM.2009.02.018

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gupta S, Desjardins B, Baman T, Ilg K, Good E, Crawford T, Oral H, Pelosi F, Chugh A, Morady F, Bogun F (2012) Delayed-enhanced MR scar imaging and Intraprocedural registration into an electroanatomical mapping system in post-infarction patients. JACC Cardiovasc Imaging 5(2):207–210. https://doi.org/10.1016/J.JCMG.2011.08.021

    Article  PubMed  PubMed Central  Google Scholar 

  55. Andreu D, Ortiz-Pérez JT, Boussy T, Fernández-Armenta J, de Caralt TM, Perea RJ, Prat-González S, Mont L, Brugada J, Berruezo A (2014) Usefulness of contrast-enhanced cardiac magnetic resonance in identifying the ventricular arrhythmia substrate and the approach needed for ablation. Eur Heart J 35(20):1316–1326. https://doi.org/10.1093/eurheartj/eht510

    Article  PubMed  Google Scholar 

  56. Andreu D, Berruezo A, Ortiz-Pérez JT, Silva E, Mont L, Borràs R, de Caralt TM, Perea RJ, Fernández-Armenta J, Zeljko H, Brugada J (2011) Integration of 3D electroanatomic maps and magnetic resonance scar characterization into the navigation system to guide ventricular tachycardia ablation. Circ Arrhythm Electrophysiol 4(5):674–683. https://doi.org/10.1161/CIRCEP.111.961946

    Article  PubMed  Google Scholar 

  57. Quinto L, Sanchez P, Alarcón F, Garre P, Zaraket F, Prat-Gonzalez S, Ortiz-Perez JT, Jesúsperea R, Guasch E, Tolosana JM, San Antonio R, Arbelo E, Sitges M, Brugada J, Berruezo A, Mont L, Roca-Luque I (2021) Cardiac magnetic resonance to predict recurrences after ventricular tachycardia ablation: septal involvement, transmural channels, and left ventricular mass. Europace 23(9):1437–1445. https://doi.org/10.1093/europace/euab127

    Article  PubMed  Google Scholar 

  58. Schelbert EB, Hsu LY, Anderson SA, Mohanty BD, Karim SM, Kellman P, Aletras AH, Arai AE (2010) Late gadolinium-enhancement cardiac magnetic resonance identifies postinfarction myocardial fibrosis and the border zone at the near cellular level in ex vivo rat heart. Circ Cardiovasc Imaging 3(6):743–752. https://doi.org/10.1161/CIRCIMAGING.108.835793

    Article  PubMed  PubMed Central  Google Scholar 

  59. Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, Finn PJ, Judd RM (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 281(1):215–223

    Article  Google Scholar 

  60. Sievers B, Elliott MD, Hurwitz LM, Albert TSE, Klem I, Rehwald WG, Parker MA, Judd RM, Kim RJ (2007) Rapid detection of myocardial infarction by subsecond, free-breathing delayed contrast-enhancement cardiovascular magnetic resonance. Circulation 115(2):236–244. https://doi.org/10.1161/CIRCULATIONAHA.106.635409

    Article  PubMed  Google Scholar 

  61. Oshinski JN, Delfino JG, Sharma P, Gharib AM, Pettigrew RI (2010) Cardiovascular magnetic resonance at 3.0T: current state of the art. J Cardiovasc Magn Reson 12(1):55. https://doi.org/10.1186/1532-429X-12-55

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fenchel M, Kramer U, Nael K, Miller S (2007) Cardiac magnetic resonance imaging at 3.0 T. Top Magn Reson Imaging 18(2):95–104. https://doi.org/10.1097/RMR.0b013e3180f617afi

    Article  PubMed  Google Scholar 

  63. Rajiah P, Bolen MA (2014) Cardiovascular MR imaging at 3 T: opportunities, challenges, and solutions. Radiographics 34(6):1612–1635. https://doi.org/10.1161/CIRCEP.111.961946

    Article  PubMed  Google Scholar 

  64. Sommer T, Naehle CP, Yang A, Zeijlemaker V, Hackenbroch M, Schmiedel A, Meyer C, Strach K, Skowasch D, Vahlhaus C, Litt H, Schild H (2006) Strategy for safe performance of extrathoracic magnetic resonance imaging at 1.5 tesla in the presence of cardiac pacemakers in non-pacemaker-dependent patients: A prospective study with 115 examinations. Circulation 114(12):1285–1292. https://doi.org/10.1161/CIRCULATIONAHA.105.597013

    Article  PubMed  Google Scholar 

  65. Ranjan R, McGann CJ, Jeong EK, Hong K, Kholmovski EG, Blauer J, Wilson BD, Marrouche NF, Kim D (2015) Wideband late gadolinium enhanced magnetic resonance imaging for imaging myocardial scar without image artefacts induced by implantable cardioverter-defibrillator: A feasibility study at 3 T. Europace 17(3):483–488. https://doi.org/10.1093/europace/euu263

    Article  PubMed  Google Scholar 

  66. Indik JH, Gimbel JR, Abe H, Alkmim-Teixeira R, Birgersdotter-Green U, Clarke GD, Dickfeld TML, Froelich JW, Grant J, Hayes DL, Heidbuchel H, Idriss SF, Kanal E, Lampert R, Machado CE, Mandrola JM, Nazarian S, Patton KK, Rozner MA, Woodard PK (2017) 2017 HRS expert consensus statement on magnetic resonance imaging and radiation exposure in patients with cardiovascular implantable electronic devices. Heart Rhythm 14(7):e97–e153. https://doi.org/10.1016/J.HRTHM.2017.04.025

    Article  PubMed  Google Scholar 

  67. Ning X, Li X, Fan X, Chen K, Hua W, Liu Z, Dai Y, Chen X, Lu M, Zhao S, Zhang S (2021) 3.0 T magnetic resonance imaging scanning on different body regions in patients with pacemakers. J Interv Cardiac Electrophysiol 61:545–550. https://doi.org/10.1007/s10840-020-00854-3

    Article  Google Scholar 

  68. Fluschnik N, Tahir E, Erley J, Müllerleile K, Metzner A, Wenzel J‑P, Guerreiro H, Adam G, Blankenberg S, Kirchhof P, Tönnis T, Nikorowitsch J (2022) 3 Tesla magnetic resonance imaging in patients with cardiac implantable electronic devices: a single centre experience. Europace 25:571–577. https://doi.org/10.1093/europace/euac213

    Article  PubMed Central  Google Scholar 

  69. Yang E, Suzuki M, Nazarian S, Halperin HR (2022) Magnetic resonance imaging safety in patients with cardiac implantable electronic devices. Trends Cardiovasc Med 32(7):440–447. https://doi.org/10.1016/J.TCM.2021.08.001

    Article  PubMed  Google Scholar 

  70. Gimbel JR (2008) Magnetic resonance imaging of Implantable cardiac rhythm devices at 3.0 tesla. Pacing Clin Electrophysiol 31(7):795–801. https://doi.org/10.1111/j.1540-8159.2008.01117.x

    Article  PubMed  Google Scholar 

  71. Naehle CP, Meyer C, Thomas D, Remerie S, Krautmacher C, Litt H, Luechinger R, Fimmers R, Schild H, Sommer T (2008) Safety of brain 3‑T MR imaging with transmit-receive head coil in patients with cardiac pacemakers: pilot prospective study with 51 examinations. Radiology 249(3):991–1001. https://doi.org/10.1148/radiol.2493072195

    Article  PubMed  Google Scholar 

  72. Brock KK, Mutic S, McNutt TR, Li H, Kessler ML (2017) Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM Radiation Therapy Committee Task Group No. 132: Report. Med Phys 44(7):e43–e76. https://doi.org/10.1002/mp.12256

    Article  CAS  PubMed  Google Scholar 

  73. Schmitt D, Blanck O, Gauer T, Fix MK, Brunner TB, Fleckenstein J, Loutfi-Krauss B, Manser P, Werner R, Wilhelm ML, Baus WW, Moustakis C (2020) Technological quality requirements for stereotactic radiotherapy: Expert review group consensus from the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. Strahlenther Onkol 196(5):421–443. https://doi.org/10.1007/s00066-020-01583-2

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rong Y, Rosu-Bubulac M, Benedict SH, Cui Y, Ruo R, Connell T, Kashani R, Latifi K, Chen Q, Geng H, Sohn J, Xiao Y (2021) Rigid and deformable image registration for radiation therapy: a self-study evaluation guide for NRG oncology clinical trial participation. Pract Radiat Oncol 11(4):282–298. https://doi.org/10.1016/J.PRRO.2021.02.007

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the anonymous reviewers and the section editor the for the constructive feedback provided during the review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Rosu-Bubulac PhD.

Ethics declarations

Conflict of interest

M. Rosu-Bubulac, C.R. Trankle, P. Mankad, J.D. Grizzard, K.A. Ellenbogen, J.H. Jordan, and E. Weiss declare that they have no competing interests.

Additional information

Data Availability Statement

Research data are stored in an institutional repository and will be shared upon request to the corresponding author.

Supplementary Information

66_2023_2159_MOESM1_ESM.docx

The supplementary information includes a review of the imaging data used for STAR target definition and treatment planning, as well as sample images to illustrate the effect of using a metronome or compression belt for respiratory motion management

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosu-Bubulac, M., Trankle, C.R., Mankad, P. et al. Institutional experience report on the target contouring workflow in the radiotherapy department for stereotactic arrhythmia radioablation delivered on conventional linear accelerators. Strahlenther Onkol 200, 83–96 (2024). https://doi.org/10.1007/s00066-023-02159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-023-02159-6

Keywords

Navigation