Skip to main content

Advertisement

Log in

Impact of magnetic resonance imaging-related geometric distortion of dose distribution in fractionated stereotactic radiotherapy in patients with brain metastases

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The geometric distortion related to magnetic resonance (MR) imaging in a diagnostic radiology (MRDR) and radiotherapy (MRRT) setup is evaluated, and the dosimetric impact of MR distortion on fractionated stereotactic radiotherapy (FSRT) in patients with brain metastases is simulated.

Materials and methods

An anthropomorphic skull phantom was scanned using a 1.5‑T MR scanner, and the magnitude of MR distortion was calculated with (MRDR-DC and MRRT-DC) and without (MRDR-nDC and MRRT-nDC) distortion-correction algorithms. Automated noncoplanar volumetric modulated arc therapy (HyperArc, HA; Varian Medical Systems, Palo Alto, CA, USA) plans were generated for 53 patients with 186 brain metastases. The MR distortion at each gross tumor volume (GTV) was calculated using the distance between the center of the GTV and the MR image isocenter (MIC) and the quadratic regression curve derived from the phantom study (MRRT-DC and MRRT-nDC). Subsequently, the radiation isocenter of the HA plans was shifted according to the MR distortion at each GTV (HADC and HAnDC).

Results

The median MR distortions were approximately 0.1 mm when the distance from the MIC was < 30 mm, whereas the median distortion varied widely when the distance was > 60 mm (0.23, 0.47, 0.37, and 0.57 mm in MRDR-DC, MRDR-nDC, MRRT-DC, and MRRT-nDC, respectively). The dose to the 98% of the GTV volume (D98%) decreased as the distance from the MIC increased. In the HADC plans, the relative dose difference of D98% was less than 5% when the GTV was located within 70 mm from the MIC, whereas the underdose of GTV exceeded 5% when it was 48 mm (−26.5% at maximum) away from the MIC in the HAnDC plans.

Conclusion

Use of a distortion-correction algorithm in the studied MR diagnoses is essential, and the dosimetric impact of MR distortion is not negligible, particularly for tumors located far away from the MIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AP:

Anterior–posterior

CT:

Computed tomography

DC:

Distortion correction

DX% :

Dose to the X% volume of the gross tumor volume

FSRT:

Fractionated stereotactic radiotherapy

GTV:

Gross tumor volume

HA:

HyperArc

HADC :

HyperArc plan simulating the impact of MR distortion with DC

HAnDC :

HyperArc plan simulating impact of MR distortion without DC

LR:

Left–right

MIC:

MR image isocenter

MR:

Magnetic resonance

MRDR :

MR image in diagnostic radiology setup

MRDR-DC:

MR image in diagnostic radiology setup with DC

MRDR-nDC:

MR image in diagnostic radiology setup without DC

MRRT :

MR image in radiotherapy setup

MRRT-DC:

MR image in radiotherapy setup with DC

MRRT-nDC:

MR image in radiotherapy setup without DC

PTV:

Planning target volume

RIC:

Radiation isocenter

ShiftAP :

Positional shift of GTV due to MR distortion in the AP direction

ShiftLR :

Positional shift of GTV due to MR distortion in the LR direction

ShiftSI :

Positional shift of GTV due to MR distortion in the superior-inferior direction

SI:

Superior–posterior

SRS:

Stereotactic radiosurgery

TC:

Tumor center

WBRT:

Whole-brain radiotherapy

References

  1. Yao S, Zuo H, Li W, Cai Y, Zhang Q, Pang L et al (2023) The correlations between psychological distress, cognitive impairment and quality of life in patients with brain metastases after whole-brain radiotherapy. Clin Transl Oncol 25(1):207–217. https://doi.org/10.1007/s12094-022-02927-3

  2. Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044

    Article  PubMed  Google Scholar 

  3. DeAngelis LM, Delattre JY, Posner JB (1989) Radiation-induced dementia in patients cured of brain metastases. Neurology 39:789–796

    Article  CAS  PubMed  Google Scholar 

  4. Gaebe K, Li AY, Park A, Parmar A, Lok BH, Sahgal A et al (2022) Stereotactic radiosurgery versus whole brain radiotherapy in patients with intracranial metastatic disease and small-cell lung cancer: a systematic review and meta-analysis. Lancet Oncol 23:931–939

    Article  PubMed  Google Scholar 

  5. van Grinsven EE, Nagtegaal SHJ, Verhoeff JJC, van Zandvoort MJE (2021) The impact of Stereotactic or whole brain radiotherapy on neurocognitive functioning in adult patients with brain metastases: a systematic review and meta-analysis. Oncol Res Treat 44:622–636

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee WJ, Choi JW, Kong DS, Seol HJ, Nam DH, Lee JI (2022) Clinical outcomes of patients with multiple courses of radiosurgery for brain metastases from non-small cell lung cancer. Sci Rep 12:10712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ohira S, Ueda Y, Akino Y, Hashimoto M, Masaoka A, Hirata T et al (2018) HyperArc VMAT planning for single and multiple brain metastases stereotactic radiosurgery: a new treatment planning approach. Radiat Oncol 13:13

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kirkpatrick JP, Wang Z, Sampson JH, McSherry F, Herndon JE 2nd, Allen KJ et al (2015) Defining the optimal planning target volume in image-guided stereotactic radiosurgery of brain metastases: results of a randomized trial. Int J Radiat Oncol Biol Phys 91:100–108

    Article  PubMed  Google Scholar 

  9. Sze G, Milano E, Johnson C, Heier L (1990) Detection of brain metastases: comparison of contrast-enhanced MR with unenhanced MR and enhanced CT. AJNR Am J Neuroradiol 11:785–791

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tong E, McCullagh KL, Iv M (2020) Advanced imaging of brain metastases: from augmenting visualization and improving diagnosis to evaluating treatment response. Front Neurol 11:270

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ulin K, Urie MM, Cherlow JM (2010) Results of a multi-institutional benchmark test for cranial CT/MR image registration. Int J Radiat Oncol Biol Phys 77:1584–1589

    Article  PubMed  PubMed Central  Google Scholar 

  12. Paulson ES, Crijns SP, Keller BM, Wang J, Schmidt MA, Coutts G et al (2016) Consensus opinion on MRI simulation for external beam radiation treatment planning. Radiother Oncol 121:187–192

    Article  PubMed  Google Scholar 

  13. Zaitsev M, Maclaren J, Herbst M (2015) Motion artifacts in MRI: A complex problem with many partial solutions. J Magn Reson Imaging 42:887–901

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cuccia F, Alongi F, Belka C, Boldrini L, Horner-Rieber J, McNair H et al (2021) Patient positioning and immobilization procedures for hybrid MR-Linac systems. Radiat Oncol 16:183

    Article  PubMed  PubMed Central  Google Scholar 

  15. Koike Y, Akino Y, Sumida I, Shiomi H, Mizuno H, Yagi M et al (2020) Feasibility of synthetic computed tomography generated with an adversarial network for multi-sequence magnetic resonance-based brain radiotherapy. J Radiat Res 61:92–103

    Article  PubMed  Google Scholar 

  16. Lerner M, Medin J, Jamtheim Gustafsson C, Alkner S, Siversson C, Olsson LE (2021) Clinical validation of a commercially available deep learning software for synthetic CT generation for brain. Radiat Oncol 16:66

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu X, Emami H, Nejad-Davarani SP, Morris E, Schultz L, Dong M et al (2021) Performance of deep learning synthetic CTs for MR-only brain radiation therapy. J Appl Clin Med Phys 22:308–317

    Article  PubMed  PubMed Central  Google Scholar 

  18. Seibert TM, White NS, Kim GY, Moiseenko V, McDonald CR, Farid N et al (2016) Distortion inherent to magnetic resonance imaging can lead to geometric miss in radiosurgery planning. Pract Radiat Oncol 6:e319–e28

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alzahrani M, Broadbent DA, Chuter R, Al-Qaisieh B, Jackson S, Michael H et al (2020) Audit feasibility for geometric distortion in magnetic resonance imaging for radiotherapy. Phys Imaging Radiat Oncol 15:80–84

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kavaluus H, Nousiainen K, Kaijaluoto S, Seppala T, Saarilahti K, Tenhunen M (2021) Determination of acceptance criteria for geometric accuracy of magnetic resonance imaging scanners used in radiotherapy planning. Phys Imaging Radiat Oncol 17:58–64

    Article  PubMed  PubMed Central  Google Scholar 

  21. Peerlings J, Compter I, Janssen F, Wiggins CJ, Postma AA, Mottaghy FM et al (2019) Characterizing geometrical accuracy in clinically optimised 7T and 3T magnetic resonance images for high-precision radiation treatment of brain tumours. Phys Imaging Radiat Oncol 9:35–42

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mengling V, Bert C, Perrin R, Masitho S, Weissmann T, Mansoorian S et al (2021) Implementation of a dedicated 1.5T MR scanner for radiotherapy treatment planning featuring a novel high-channel coil setup for brain imaging in treatment position. Strahlenther Onkol 197:246–256

    Article  PubMed  Google Scholar 

  23. Ohira S, Kanayama N, Komiyama R, Ikawa T, Toratani M, Ueda Y et al (2021) Intra-fractional patient setup error during fractionated intracranial stereotactic irradiation treatment of patients wearing medical masks: comparison with and without bite block during COVID-19 pandemic. J Radiat Res 62:163–171

    Article  CAS  PubMed  Google Scholar 

  24. Kanayama N, Ikawa T, Ohira S, Hirata T, Morimoto M, Ogawa K et al (2022) Volumetric reduction of brain metastases after stereotactic radiotherapy: Prognostic factors and effect on local control. Cancer Med 11(24):4806–4815. https://doi.org/10.1002/cam4.4809

  25. Karger CP, Hoss A, Bendl R, Canda V, Schad L (2006) Accuracy of device-specific 2D and 3D image distortion correction algorithms for magnetic resonance imaging of the head provided by a manufacturer. Phys Med Biol 51:N253–61

    Article  PubMed  Google Scholar 

  26. Schilling KG, Blaber J, Huo Y, Newton A, Hansen C, Nath V et al (2019) Synthesized b0 for diffusion distortion correction (Synb0-DisCo). Magn Reson Imaging 64:62–70

    Article  PubMed  PubMed Central  Google Scholar 

  27. Boudreau M, Tardif CL, Stikov N, Sled JG, Lee W, Pike GB (2017) B(1) mapping for bias-correction in quantitative T(1) imaging of the brain at 3T using standard pulse sequences. J Magn Reson Imaging 46:1673–1682

    Article  PubMed  Google Scholar 

  28. Torfeh T, Hammoud R, Paloor S, Arunachalam Y, Aouadi S, Al-Hammadi N (2021) Design and construction of a customizable phantom for the characterization of the three-dimensional magnetic resonance imaging geometric distortion. J Appl Clin Med Phys 22:149–157

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yahanda AT, Goble TJ, Sylvester PT, Lessman G, Goddard S, McCollough B et al (2020) Impact of 3‑dimensional versus 2‑dimensional image distortion correction on Stereotactic neurosurgical navigation image fusion reliability for images acquired with Intraoperative magnetic resonance imaging. Oper Neurosurg (hagerstown) 19:599–607

    Article  PubMed  Google Scholar 

  30. Retif P, Djibo Sidikou A, Mathis C, Letellier R, Verrecchia-Ramos E, Dupres R et al (2022) Evaluation of the ability of the Brainlab elements cranial distortion correction algorithm to correct clinically relevant MRI distortions for cranial SRT. Strahlenther Onkol 198:907–918

    Article  PubMed  Google Scholar 

  31. Vergalasova I, Liu H, Alonso-Basanta M, Dong L, Li J, Nie K et al (2019) Multi-institutional dosimetric evaluation of modern day Stereotactic Radiosurgery (SRS) treatment options for multiple brain metastases. Front Oncol 9:483

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lucia F, Key S, Dissaux G, Goasduff G, Lucia AS, Ollivier L et al (2019) Inhomogeneous tumor dose distribution provides better local control than homogeneous distribution in stereotactic radiotherapy for brain metastases. Radiother Oncol 130:132–138

    Article  PubMed  Google Scholar 

  33. Dupic G, Brun L, Molnar I, Leyrat B, Chassin V, Moreau J et al (2021) Significant correlation between gross tumor volume (GTV) D98 % and local control in multifraction stereotactic radiotherapy (MF-SRT) for unresected brain metastases. Radiother Oncol 154:260–268

    Article  CAS  PubMed  Google Scholar 

  34. AAPM (1984) Physical aspects of quality assurance in radiation therapy. American Association of Physicists in Medicine Report Series, vol 13. American Institute of Physics, New York

    Google Scholar 

  35. Kraft J, van Timmeren JE, Mayinger M, Frei S, Borsky K, Stark LS et al (2021) Distance to isocenter is not associated with an increased risk for local failure in LINAC-based single-isocenter SRS or SRT for multiple brain metastases. Radiother Oncol 159:168–175

    Article  PubMed  Google Scholar 

  36. Kaufmann TJ, Smits M, Boxerman J, Huang R, Barboriak DP, Weller M et al (2020) Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro Oncol 22:757–772

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lewis BC, Snyder WJ, Kim S, Kim T (2018) Monitoring frequency of intra-fraction patient motion using the ExacTrac system for LINAC-based SRS treatments. J Appl Clin Med Phys 19:58–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ohira S, Komiyama R, Kanayama N, Ueda Y, Inui S, Miyazaki M et al (2022) Intra-fractional motion error during HyperArc stereotactic radiosurgery on patients with brain metastases: Comparison of open and full-face clamshell-style immobilization devices. J Appl Clin Med Phys 23:e13536

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by a JSPS KAKENHI grant (Grant-in-Aid for Scientific Research (C) 21K07742).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the writing of this article and took responsibility for its content. The authors confirm that the content of this manuscript has not been published or submitted for publication elsewhere.

Corresponding author

Correspondence to Shingo Ohira.

Ethics declarations

Conflict of interest

S. Ohira, Y. Suzuki, H. Washio, Y. Yamamoto, S. Tateishi, S. Inui, N. Kanayama, M. Kawamata, M. Miyazaki, T. Nishio, M. Koizumi, K. Nakanishi, and K. Konishi declare that they have no competing interests.

Ethical standards

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohira, S., Suzuki, Y., Washio, H. et al. Impact of magnetic resonance imaging-related geometric distortion of dose distribution in fractionated stereotactic radiotherapy in patients with brain metastases. Strahlenther Onkol 200, 39–48 (2024). https://doi.org/10.1007/s00066-023-02120-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-023-02120-7

Keywords

Navigation