Skip to main content

Advertisement

Log in

Robustness analysis of surface-guided DIBH left breast radiotherapy: personalized dosimetric effect of real intrafractional motion within the beam gating thresholds

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The robustness of surface-guided (SG) deep-inspiration breath-hold (DIBH) radiotherapy (RT) for left breast cancer was evaluated by investigating any potential dosimetric effects due to the residual intrafractional motion allowed by the selected beam gating thresholds. The potential reduction of DIBH benefits in terms of organs at risk (OARs) sparing and target coverage was evaluated for conformational (3DCRT) and intensity-modulated radiation therapy (IMRT) techniques.

Methods

A total of 192 fractions of SGRT DIBH left breast 3DCRT treatment for 12 patients were analyzed. For each fraction, the average of the real-time displacement between the isocenter on the daily reference surface and on the live surface (“SGRT shift”) during beam-on was evaluated and applied to the original plan isocenter. The dose distribution for the treatment beams with the new isocenter point was then calculated and the total plan dose distribution was obtained by summing the estimated perturbed dose for each fraction. Then, for each patient, the original plan and the perturbed one were compared by means of Wilcoxon test for target coverage and OAR dose–volume histogram (DVH) metrics. A global plan quality score was calculated to assess the overall plan robustness against intrafractional motion of both 3DCRT and IMRT techniques.

Results

Target coverage and OAR DVH metrics did not show significant variations between the original and the perturbed plan for the IMRT techniques. 3DCRT plans showed significant variations for the left descending coronary artery (LAD) and the humerus only. However, none of the dose metrics exceeded the mandatory dose constraints for any of the analyzed plans. The global plan quality analysis indicated that both 3DCRT and IMRT techniques were affected by the isocenter shifts in the same way and, generally, the residual isocenter shifts more likely tend to worsen the plan in all cases.

Conclusion

The DIBH technique proved to be robust against residual intrafractional isocenter shifts allowed by the selected SGRT beam-hold thresholds. Small-volume OARs located near high dose gradients showed significant marginal deteriorations in the perturbed plans with the 3DCRT technique only. Global plan quality was mainly influenced by patient anatomy and treatment beam geometry rather than the technique adopted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. GBD 2016 Causes of Death Collaborators (2017). Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study. Lancet.;390(10100):1151–1210. https://doi.org/10.1016/S0140-6736(17)32152‑9. Erratum in: Lancet. 2017 Oct 28;390(10106):e38. PMID: 28919116; PMCID: PMC5605883.

  2. Gøtzsche PC, Jørgensen KJ (2013) Screening for breast cancer with mammography. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD001877.pub5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sardanelli F, Aase HS, Álvarez M, Azavedo E, Baarslag HJ, Balleyguier C, Baltzer PA, Beslagic V, Bick U, Bogdanovic-Stojanovic D, Briediene R, Brkljacic B, Camps Herrero J, Colin C, Cornford E, Danes J, de Geer G, Esen G, Evans A, Fuchsjaeger MH, Gilbert FJ, Graf O, Hargaden G, Helbich TH, Heywang-Köbrunner SH, Ivanov V, Jónsson Á, Kuhl CK, Lisencu EC, Luczynska E, Mann RM, Marques JC, Martincich L, Mortier M, Müller-Schimpfle M, Ormandi K, Panizza P, Pediconi F, Pijnappel RM, Pinker K, Rissanen T, Rotaru N, Saguatti G, Sella T, Slobodníková J, Talk M, Taourel P, Trimboli RM, Vejborg I, Vourtsis A, Forrai G (2017) Position paper on screening for breast cancer by the European Society of Breast Imaging (EUSOBI) and 30 national breast radiology bodies from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Israel, Lithuania, Moldova, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Spain, Sweden, Switzerland and Turkey. Eur Radiol 27(7):2737–2743. https://doi.org/10.1007/s00330-016-4612-z

    Article  PubMed  Google Scholar 

  4. Harris EE (2008) Cardiac mortality and morbidity after breast cancer treatment. Cancer Control 15(2):120–129. https://doi.org/10.1177/107327480801500204

    Article  PubMed  Google Scholar 

  5. Darby S, McGale P, Correa C, Taylor C, Arriagada R, Clarke M, Cutter D, Davies C, Ewertz M, Godwin J, Gray R, Pierce L, Whelan T, Wang Y, Peto R, Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2011) Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378(9804):1707–1716. https://doi.org/10.1016/S0140-6736

    Article  CAS  PubMed  Google Scholar 

  6. EBCTCG (Early Breast Cancer Trialists’ Collaborative Group) et al (2011) Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15 year breast cancer death: meta-analysis of individual patient data for 10 801 women in 17 randomised trials. Lancet 378(11):1707–1716. https://doi.org/10.1016/S0140-6736

  7. EBCTCG (Early Breast Cancer Trialists’ Collaborative Group), McGale P, Taylor C, Correa C et al (2014) Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 383(14):2127–2135. https://doi.org/10.1016/S0140-6736

    Article  Google Scholar 

  8. Clarke M, Collins R, Darby S et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: An overview of the randomised trials. Lancet 366(5):2087–2106. https://doi.org/10.1016/S0140-6736

    Article  CAS  PubMed  Google Scholar 

  9. Darby SC, McGale P, Taylor CW et al (2005) Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: Prospective cohort study of about 300000 women in US SEER cancer registries. Lancet 6(5):557–565. https://doi.org/10.1016/S1470-2045

    Article  Google Scholar 

  10. Henson KE, McGale P, Taylor C, Darby SC (2013) Radiation-related mortality from heart disease and lung cancer more than 20 years after radiotherapy for breast cancer. Br J Cancer 108:179–182. https://doi.org/10.1038/bjc.2012.575

    Article  CAS  PubMed  Google Scholar 

  11. Darby SC, Ewertz M, McGale P et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998. https://doi.org/10.1056/NEJMoa1209825

    Article  CAS  PubMed  Google Scholar 

  12. Correa CR, Litt HI, Hwang WT et al (2007) Coronary artery findings after left-sided compared with right-sided radiation treatment for early-stage breast cancer. J Clin Oncol 25(21):3031–3037

    Article  PubMed  Google Scholar 

  13. Wennstig AK, Garmo H, Wadsten L, Lagerqvist B, Fredriksson I, Holmberg L, Blomqvist C, Nilsson G, Sund M (2022) Risk of coronary stenosis after adjuvant radiotherapy for breast cancer. Strahlenther Onkol 198(7):630–638. https://doi.org/10.1007/s00066-022-01927-0

    Article  PubMed  PubMed Central  Google Scholar 

  14. Korreman SS, Pedersen AN, Aarup LR et al (2006) Reduction of cardiac and pulmonary complication probabilities after breathing adapted radiotherapy for breast cancer. Int J Radiat Oncol Biol Phys 65:1375–1380. https://doi.org/10.1016/j.ijrobp.2006.03.046

    Article  PubMed  Google Scholar 

  15. Wang W, Purdie TG, Rahman M, Marshall A, Liu FF, Fyles A (2012) Rapid automated treatment planning process to select breast cancer patients for active breathing control to achieve cardiac dose reduction. Int J Radiat Oncol Biol Phys 82(1):386–393. https://doi.org/10.1016/j.ijrobp.2010.09.026

    Article  PubMed  Google Scholar 

  16. Korreman SS, Pedersen AN, Nøttrup TJ, Specht L, Nyström H (2005) Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique. Radiother Oncol 76(3):311–318. https://doi.org/10.1016/j.radonc.2005.07.009

    Article  PubMed  Google Scholar 

  17. Cerviño LI, Gupta S, Rose MA et al (2009) Using surface imaging and visual coaching to improve the reproducibility and stability of deep inspiration breath hold for left-breast-cancer radiotherapy. Phys Med Biol 54:6853–6865. https://doi.org/10.1088/0031-9155/54/22/007

    Article  PubMed  Google Scholar 

  18. Boda-Heggemann J, Knopf AC, Simeonova-Chergou A, Wertz H, Stieler F, Jahnke A, Jahnke L, Fleckenstein J, Vogel L, Arns A, Blessing M, Wenz F, Lohr F (2016) Deep Inspiration Breath Hold-Based Radiation Therapy: A Clinical Review. Int J Radiat Oncol Biol Phys 94(3):478–492. https://doi.org/10.1016/j.ijrobp.2015.11.049

    Article  PubMed  Google Scholar 

  19. Al-Hallaq HA, Cerviño L, Gutierrez AN, Havnen-Smith A, Higgins SA, Kügele M, Padilla L, Pawlicki T, Remmes N, Smith K, Tang X, Tomé WA (2022) AAPM task group report 302: Surface-guided radiotherapy. Med Phys 49(4):e82–e112. https://doi.org/10.1002/mp.15532

    Article  PubMed  Google Scholar 

  20. Freislederer P, Batista V, Öllers M, Buschmann M, Steiner E, Kügele M, Fracchiolla F, Corradini S, de Smet M, Moura F, Perryck S, Dionisi F, Nguyen D, Bert C, Lehmann J (2022) ESTRO-ACROP guideline on surface guided radiation therapy. Radiother Oncol 173:188–196. https://doi.org/10.1016/j.radonc.2022.05.026

    Article  CAS  PubMed  Google Scholar 

  21. Mast ME, van Kempen-Harteveld L, Heijenbrok MW, Kalidien Y, Rozema H, Jansen WP, Petoukhova AL, Struikmans H (2013) Left-sided breast cancer radiotherapy with and without breath-hold: does IMRT reduce the cardiac dose even further? Radiother Oncol 108(2):248–253. https://doi.org/10.1016/j.radonc.2013.07.017

    Article  PubMed  Google Scholar 

  22. Marrazzo L, Redapi L, Zani M, Calusi S, Meattini I, Arilli C, Casati M, Compagnucci A, Talamonti C, Raspanti D, Pertutti S, Di Cataldo V, Livi L, Pallotta S (2022) A semi-automatic planning technique for whole breast irradiation with tangential IMRT fields. Phys Med 98:122–130. https://doi.org/10.1016/j.ejmp.2022.05.001

    Article  CAS  PubMed  Google Scholar 

  23. Coon AB, Dickler A, Kirk MC, Liao Y, Shah AP, Strauss JB, Chen S, Turian J, Griem KL (2010) Tomotherapy and multifield intensity-modulated radiotherapy planning reduce cardiac doses in left-sided breast cancer patients with unfavorable cardiac anatomy. Int J Radiat Oncol Biol Phys 78(1):104–110. https://doi.org/10.1016/j.ijrobp.2009.07.1705

    Article  PubMed  Google Scholar 

  24. Reitz D, Carl G, Schönecker S, Pazos M, Freislederer P, Niyazi M, Ganswindt U, Alongi F, Reiner M, Belka C, Corradini S (2018) Real-time intra-fraction motion management in breast cancer radiotherapy: analysis of 2028 treatment sessions. Radiat Oncol. https://doi.org/10.1186/s13014-018-1072-4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Betgen A, Alderliesten T, Sonke JJ, van Vliet-Vroegindeweij C, Bartelink H, Remeijer P (2013) Assessment of set-up variability during deep inspiration breath hold radiotherapy for breast cancer patients by 3D-surface imaging. Radiother Oncol 106(2):225–230. https://doi.org/10.1016/j.radonc.2012.12.016

    Article  PubMed  Google Scholar 

  26. Xiao A, Crosby J, Malin M, Kang H, Washington M, Hasan Y, Chmura SJ, Al-Hallaq HA (2018) Single-institution report of setup margins of voluntary deep-inspiration breath-hold (DIBH) whole breast radiotherapy implemented with real-time surface imaging. J Appl Clin Med Phys 19(4):205–213. https://doi.org/10.1002/acm2.12368

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gierga DP, Turcotte JC, Sharp GC, Sedlacek DE, Cotter CR, Taghian AG (2012) A voluntary breath-hold treatment technique for the left breast with unfavorable cardiac anatomy using surface imaging. Int J Radiat Oncol Biol Phys 84(5):e663–8. https://doi.org/10.1016/j.ijrobp.2012.07.2379

    Article  PubMed  Google Scholar 

  28. Hamming VC, Visser C, Batin E, McDermott LN, Busz DM, Both S, Langendijk JA, Sijtsema NM (2019) Evaluation of a 3D surface imaging system for deep inspiration breath-hold patient positioning and intra-fraction monitoring. Radiat Oncol 14(1):125. https://doi.org/10.1186/s13014-019-1329-6

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gnerucci A, Esposito M, Ghirelli A, Pini S, Paoletti L, Barca R, Fondelli S, Alpi P, Grilli B, Rossi F, Scoccianti S, Russo S (2022) Surface-guided DIBH radiotherapy for left breast cancer: impact of different thresholds on intrafractional motion monitoring and DIBH stability. Strahlenther Onkol. https://doi.org/10.1007/s00066-022-02008-y

    Article  PubMed  Google Scholar 

  30. Nilsson G, Holmberg L, Garmo H et al (2012) Distribution of coronary artery stenosis after radiation for breast cancer. J Clin Oncol 30(4):380–386

    Article  PubMed  Google Scholar 

  31. Formenti SC, Gidea-Addeo D, Goldberg JD, Roses DF, Guth A, Rosenstein BS, DeWyngaert KJ (2007) Phase I–II trial of prone accelerated intensity modulated radiation therapy to the breast to optimally spare normal tissue. J Clin Oncol 25(16):2236–2242. https://doi.org/10.1200/JCO.2006.09.1041

    Article  PubMed  Google Scholar 

  32. Mulliez T, Veldeman L, Speleers B, Mahjoubi K, Remouchamps V, Van Greveling A, Gilsoul M, Berwouts D, Lievens Y, Van den Broecke R, De Neve W (2015) Heart dose reduction by prone deep inspiration breath hold in left-sided breast irradiation. Radiother Oncol 114(1):79–84. https://doi.org/10.1016/j.radonc.2014.11.038

    Article  PubMed  Google Scholar 

  33. Korreman SS, Pedersen AN, Aarup LR, Nottrup TJ, Specht L, Nystrom H (2006) Reduction of cardiac and pulmonary complication probabilities after breathing adapted radiotherapy for breast cancer. Int J Radiat Oncol Biol Phys 65(5):1375–1380. https://doi.org/10.1016/j.ijrobp.2006.03.046

    Article  PubMed  Google Scholar 

  34. Duma M, Baumann R, Budach W, Dunst J, Feyer P, Fietkau R, Haase W, Harms W, Hehr T, Krug D, Piroth MD, Sedlmayer F, Souchon R, Sauer R (2019) Heart-sparing radiotherapy techniques in breast cancer patients: a recommendation of the breast cancer expert panel of the German society of radiation oncology (DEGRO). Strahlenther Onkol: 195(10):861-871. English. https://doi.org/10.1007/s00066-019-01495-w. Epub 2019 Jul 18. PMID: 31321461.

  35. Hodapp N (2012) The ICRU Report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). Strahlenther Onkol 188(1):97–99. https://doi.org/10.1007/s00066-011-0015-x

    Article  CAS  PubMed  Google Scholar 

  36. Gagliardi G, Constine LS, Moiseenko V, Correa C, Pierce LJ, Allen AM, Marks LB (2010) Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys 76(3):77–85. https://doi.org/10.1016/j.ijrobp.2009.04.093

    Article  Google Scholar 

  37. Werner-Wasik M, Yorke E, Deasy J, Nam J, Marks LB (2010) Radiation dose-volume effects in the esophagus. Int J Radiat Oncol Biol Phys 76(3):86–93. https://doi.org/10.1016/j.ijrobp.2009.05.070

    Article  Google Scholar 

  38. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 6:80–83

    Article  Google Scholar 

  39. Russo S, Esposito M, Hernandez V, Saez J, Rossi F, Paoletti L, Mancosu P (2019) Does deep inspiration breath hold reduce plan complexity? Multicentric experience of left breast cancer radiotherapy with volumetric modulated arc therapy. Phys Medica 59:79–85

    Article  Google Scholar 

  40. Yock AD, Mohan R, Flampouri S et al (2019) Robustness analysis for external beam radiation therapy treatment plans: describing uncertainty scenarios and reporting their dosimetric consequences. Pract Radiat Oncol 9(4):200–207. https://doi.org/10.1016/j.prro.2018.12.002

    Article  PubMed  Google Scholar 

  41. Batista V, Meyer J, Kügele M, Al-Hallaq H (2020) Clinical paradigms and challenges in surface guided radiation therapy: Where do we go from here? Radiother Oncol 153:34–42. https://doi.org/10.1016/j.radonc.2020.09.041

    Article  PubMed  Google Scholar 

  42. Kügele M, Edvardsson A, Berg L, Alkner S, Andersson Ljus C, Ceberg S (2018) Dosimetric effects of intrafractional isocenter variation during deep inspiration breath-hold for breast cancer patients using surface-guided radiotherapy. J Appl Clin Med Phys 19(1):25–38. https://doi.org/10.1002/acm2.12214

    Article  PubMed  Google Scholar 

  43. Jensen CA, Roa AMA, Johansen M, Lund JÅ, Frengen J (2018) Robustness of VMAT and 3DCRT plans toward setup errors in radiation therapy of locally advanced left-sided breast cancer with DIBH. Phys Med 45:12–18. https://doi.org/10.1016/j.ejmp.2017.11.019

    Article  PubMed  Google Scholar 

  44. Tang X, Cullip T, Dooley J, Zagar T, Jones E, Chang S, Zhu X, Lian J, Marks L (2015) Dosimetric effect due to the motion during deep inspiration breath hold for left-sided breast cancer radiotherapy. J Appl Clin Med Phys 16(4):91–99. https://doi.org/10.1120/jacmp.v16i4.5358

    Article  PubMed  PubMed Central  Google Scholar 

  45. Esposito M, Piermattei A, Bresciani S, Orlandini LC, Falco MD, Giancaterino S et al (2021) Improving dose delivery accuracy with EPID in vivo dosimetry: results from a multicenter study. Strahlenther Onkol 197(7):633–643. https://doi.org/10.1007/s00066-021-01749-6

    Article  CAS  PubMed  Google Scholar 

  46. Fiagan YAC, Bossuyt E, Machiels M, Nevens D, Billiet C, Poortmans P et al (2022) Comparing treatment uncertainty for ultra- vs. standard-hypofractionated breast radiation therapy based on in-vivo dosimetry. Phys Imaging Radiat Oncol 13(22):85–90. https://doi.org/10.1016/j.phro.2022.05.003

    Article  Google Scholar 

  47. Feng M, Moran JM, Koelling T et al (2011) Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int J Radiat Oncol Biol Phys 79(1):10–18. https://doi.org/10.1016/j.ijrobp.2009.10.058

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gnerucci.

Ethics declarations

Conflict of interest

A. Gnerucci, M. Esposito, A. Ghirelli, S. Pini, L. Paoletti, R. Barca, S. Fondelli, P. Alpi, B. Grilli, F. Rossi, S. Scoccianti, and S. Russo declare that they have no competing interests.

Ethical standards

This study was conducted in accordance with the Declaration of Helsinki. All patient data were obtained as part of a retrospective data registration program within the framework of 2 routine clinical practice. Written informed consent was obtained from all patients.

Supplementary Information

66_2023_2102_MOESM1_ESM.docx

Figure 1SM (Example of the gamma analysis between shifted and original plan for a single patient) and Table 1SM (Values of DVH parameters for the original and perturbed 3D CRT and IMRT plans for each patient of the investigated sample).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnerucci, A., Esposito, M., Ghirelli, A. et al. Robustness analysis of surface-guided DIBH left breast radiotherapy: personalized dosimetric effect of real intrafractional motion within the beam gating thresholds. Strahlenther Onkol 200, 71–82 (2024). https://doi.org/10.1007/s00066-023-02102-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-023-02102-9

Keywords

Navigation