Skip to main content
Log in

The role of EPID in vivo dosimetry in the risk management of stereotactic lung treatments

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

A Correction to this article was published on 03 November 2023

This article has been updated

Abstract

Background and objective

In this work we report our experience with the use of in vivo dosimetry (IVD) in the risk management of stereotactic lung treatments.

Methods

A commercial software based on the electronic portal imaging device (EPID) signal was used to reconstruct the actual planning target volume (PTV) dose of stereotactic lung treatments. The study was designed in two phases: i) in the observational phase, the IVD results of 41 consecutive patients were reviewed and out-of-tolerance cases were studied for root cause analysis; ii) in the active phase, the IVD results of 52 patients were analyzed and corrective actions were taken when needed. Moreover, proactive preventions were further introduced to reduce the risk of future failures. The error occurrence rate was analyzed to evaluate the effectiveness of proactive actions.

Results

A total of 330 fractions were analyzed. In the first phase, 13 errors were identified. In the active phase, 12 errors were detected, 5 of which needed corrective actions; in 4 patients the actions taken corrected the error. Several preventions and barriers were introduced to reduce the risk of future failures: the planning checklist was updated, the procedure for vacuum pillows was improved, and use of the respiratory compression belt was optimized. A decrease in the failure rate was observed, showing the effectiveness of procedural adjustment.

Conclusion

The use of IVD allowed the quality of lung stereotactic body radiation therapy (SBRT) treatments to be improved. Patient-specific and procedural corrective actions were successfully taken as part of risk management, leading to an overall improvement in the dosimetric accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA A Cancer J Clin 68:7–30. https://doi.org/10.3322/caac.21442

    Article  Google Scholar 

  2. Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J et al (2010) Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303:1070–1076. https://doi.org/10.1001/jama.2010.261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gomez DR, Blumenschein GR Jr., Lee JJ, Hernandez M, Ye R, Camidge DR et al (2016) Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study. Lancet Oncol 17:1672–1682. https://doi.org/10.1016/S1470-2045(16)30532-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Palma DA, Olson R, Harrow S, Gaede S, Louie AV, Haasbeek C et al (2018) Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet. https://doi.org/10.1016/S0140-6736(18)32487-5

    Article  Google Scholar 

  5. Albert JM, Das P (2013) Quality indicators in radiation oncology. Int J Radiat Oncol Biol Phys 85(4):904–911. https://doi.org/10.1016/j.ijrobp.2012.08.038

    Article  PubMed  Google Scholar 

  6. World Health Organization (WHO) (2008) Radiotherapy risk profile

    Google Scholar 

  7. Mancosu P, Nicolini G, Goretti G, De Rose F, Franceschini D, Ferrari C, Reggiori G, Tomatis S, Scorsetti M (2018) Applying lean-six-sigma methodology in radiotherapy: lessons learned by the breast daily repositioning case. Radiother Oncol 127(2):326–331. https://doi.org/10.1016/j.radonc.2018.02.019

    Article  PubMed  Google Scholar 

  8. Fiagan YAC, Bossuyt E, Machiels M, Nevens D, Billiet C, Poortmans P et al (2022) Comparing treatment uncertainty for ultra- vs. standard-hypofractionated breast radiation therapy based on in-vivo dosimetry. Phys Imaging Radiat Oncol 13(22):85–90. https://doi.org/10.1016/j.phro.2022.05.003

    Article  Google Scholar 

  9. Esposito M, Villaggi E, Bresciani S, Cilla S, Falco MD, Garibaldi C et al (2020) Estimating dose delivery accuracy in stereotactic body radiation therapy: a review of in-vivo measurement methods. Radiother Oncol 149:158–167. https://doi.org/10.1016/j.radonc.2020.05.014

    Article  CAS  PubMed  Google Scholar 

  10. Mijnheer BJ, González P, Olaciregui-Ruiz I et al (2015) Overview of 3‑year experience with large-scale electronic portal imaging device-based 3‑dimensional transit dosimetry. Pract Radiat Oncol 5(6):e679–e687

    Article  PubMed  Google Scholar 

  11. Piermattei A, Greco F, Grusio M et al (2018) A validation study of a dedicated software for an automated in vivo dosimetry control in radiotherapy. Med Biol Eng Comput 56(10):1939–1947. https://doi.org/10.1007/s11517-018-1822-3

    Article  CAS  PubMed  Google Scholar 

  12. Celi S, Costa E, Wessels C et al (2016) EPID based in vivo dosimetry system: clinical experience and results. J Appl Clin Med Phys 17(3):262–276

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nailon WH, Welsh D, McDonald K et al (2019) EPID-based in vivo dosimetry using dosimetry check™: overview and clinical experience in a 5-yr study including breast, lung, prostate, and head and neck cancer patients. J Appl Clin Med Phys 20(1):6–16

    Article  PubMed  Google Scholar 

  14. Bossuyt E, Weytjens R, Nevens D, De Vos S, Verellen D (2020) Evaluation of automated pre-treatment and transit in-vivo do-simetry in radiotherapy using empirically determined parameters. Phys Imaging Radiat Oncol 16:113–129. https://doi.org/10.1016/j.phro.2020.09.011

    Article  PubMed  PubMed Central  Google Scholar 

  15. Esposito M, Piermattei A, Bresciani S, Orlandini LC, Falco MD, Giancaterino S et al (2021) Improving dose delivery accuracy with EPID in vivo dosimetry: results from a multicenter study. Strahlenther Onkol 197(7):633–643. https://doi.org/10.1007/s00066-021-01749-6

    Article  CAS  PubMed  Google Scholar 

  16. International Atomic Energy Agency (2013) Development of procedures for in vivo dosimetry in radiotherapy. IAEA, Vienna, Austria (IAEA Human Health Report No. 8)

    Google Scholar 

  17. Donaldson S (2008) Towards safer radiotherapy

    Google Scholar 

  18. MacDougall ND, Graveling M, Hansen VN, Brownsword K, Morgan A (2017) In vivo dosimetry in UK external beam radiotherapy: current and future usage. Br J Radiol 90(1072):20160915. https://doi.org/10.1259/bjr.20160915

    Article  PubMed  PubMed Central  Google Scholar 

  19. Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B et al (2010) Stereotactic body radiation therapy: the report of AAPM task group 101. Med Phys 37(8):4078–4101

    Article  PubMed  Google Scholar 

  20. Hanna GG, Murray L, Patel R, Jain S, Aitken KL, Franks KN et al (2018) UK consensus on normal tissue dose constraints for stereotactic radiotherapy. Clin Oncol (R Coll Radiol) 30(1):5–14. https://doi.org/10.1016/j.clon.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  21. Esposito M, Bastiani P, Ghirelli A et al (2018) Characterization of EPID software for VMAT transit dosimetry. Australas Phys Eng Sci Med 41(4):1021–1027. https://doi.org/10.1007/s13246-018-0693-0

    Article  PubMed  Google Scholar 

  22. Esposito M, Marrazzo L, Vanzi E, Russo S, Pallotta S, Talamonti C (2021) A validation method for EPID in vivo dosimetry algorithms. Appl Sci 11(22):10715

    Article  CAS  Google Scholar 

  23. Esposito M, Ghirelli A, Pini S, Alpi P, Barca R, Fondelli S et al (2021) Clinical implementation of 3D in vivo dosimetry for abdominal and pelvic stereotactic treatments. Radiother Oncol 154:14–20. https://doi.org/10.1016/j.radonc.2020.09.011

    Article  CAS  PubMed  Google Scholar 

  24. Baehr A, Hummel D, Gauer T et al (2022) Risk management patterns in radiation oncology—results of a national survey within the framework of the patient safety in German radiation oncology (PaSaGeRO) project. Strahlenther Onkol. https://doi.org/10.1007/s00066-022-01984-5

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huq MS, Fraass BA, Dunscombe PB, Gibbons JP Jr, Ibbott GS, Mundt AJ et al (2016) The report of task group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management. Med Phys 43(7):4209. https://doi.org/10.1118/1.4947547

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schmitt D, Blanck O, Gauer T, Fix MK, Brunner TB, Fleckenstein J, Loutfi-Krauss B et al (2020) Technological quality requirements for stereotactic radiotherapy : expert review group consensus from the DGMP working group for physics and technology in stereotactic radiotherapy. Strahlenther Onkol 196(5):421–443. https://doi.org/10.1007/s00066-020-01583-2

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guckenberger M, Andratschke N, Dieckmann K, Hoogeman MS, Hoyer M, Hurkmans C et al (2017) ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiother Oncol 124(1):11–17. https://doi.org/10.1016/j.radonc.2017.05.012

    Article  PubMed  Google Scholar 

  28. Moustakis C, Blanck O, Ebrahimi Tazehmahalleh F, Ka Heng Chan M, Ernst I, Krieger T, Duma MN et al (2017) Planning benchmark study for SBRT of early stage NSCLC : results of the DEGRO working group stereotactic radiotherapy. Strahlenther Onkol 193(10):780–790. https://doi.org/10.1007/s00066-017-1151-8

    Article  PubMed  Google Scholar 

  29. Giglioli FR, Strigari L, Ragona R et al (2016) Lung stereotactic ablative body radiotherapy: a large scale multi-institutional planning comparison for interpreting results of multi-institutional studies. Phys Med 32(4):600–606

    Article  PubMed  Google Scholar 

  30. Esposito M, Maggi G, Marino C et al (2016) Multicentre treatment planning inter-comparison in a national context: the liver stereotactic ablative radiotherapy case. Phys Med 32(1):277–283

    Article  PubMed  Google Scholar 

  31. Esposito M, Masi L, Zani M et al (2018) SBRT planning for spinal metastasis: indications from a large multicentric study. Strahlenther Onkol 195(3):226–235

    Article  PubMed  Google Scholar 

  32. McCowan PM, Asuni G, Van Uytven E et al (2017) Clinical implementation of a model-based in vivo dose verification system for stereotactic body radiation therapy—volumetric modulated arc therapy treatments using the electronic portal imaging device. Int J Radiat Oncol Biol Phys 97(5):1077–1084

    Article  PubMed  Google Scholar 

  33. McCurdy BMC, McCowan PM (2017) In vivo dosimetry for lung radiotherapy including SBRT. Phys Med 44:123–130. https://doi.org/10.1016/j.ejmp.2017.05.065

    Article  PubMed  Google Scholar 

  34. Cilla S, Ianiro A, Craus M et al (2019) Epid-based in vivo dose verification for lung stereotactic treatments delivered with multiple breath-hold segmented volumetric modulated arc therapy. J Appl Clin Med Phys 20(3):37–44

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Esposito Ph.D..

Ethics declarations

Conflict of interest

M. Esposito, P. Mancosu, A. Bruschi, A. Ghirelli, S. Pini, P. Alpi, R. Barca, C.D. Paoli, F. Meacci, B.G. Leonulli, S. Fondelli, L. Paoletti, S. Scoccianti, and S. Russo declare that they have no competing interests.

Ethical standards

This work was conducted in compliance with all the ethical standards and was approved by the local ethical committee.

Additional information

The original online version of this article was revised: In this article the affiliation details for Pietro Mancosu were incorrectly given as ‘Medical Physics Unit of Radiotherapy Dept., Humanitas Clinical and Research Hospital, Rozzano, Italy’ but should have been ‘Medical Physics Unit of Radiotherapy Dept., IRCCS Humanitas Research Hospital, Rozzano, Italy’

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, M., Mancosu, P., Bruschi, A. et al. The role of EPID in vivo dosimetry in the risk management of stereotactic lung treatments. Strahlenther Onkol 199, 992–999 (2023). https://doi.org/10.1007/s00066-023-02081-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-023-02081-x

Keywords

Navigation