Skip to main content
Log in

Linear dose response of acrocentric chromosome associations to gamma irradiation in human lymphocytes

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The frequency of acrocentric chromosome associations (ACA) was studied to determine the possible dose–response relationship of gamma irradiation in human lymphocytes.

Methods

Peripheral blood collected from three healthy donors was irradiated with 0, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, and 5 Gy of gamma radiation. Chromosomal preparations were made after 48 h of culture as per standard guidelines. The experiment was repeated three times, with a different donor each time.

Results

The ACA frequency in irradiated lymphocytes increased with radiation dose. The D–G type of association was most prominent and showed a significant dose-dependent increase in frequency. The dose response of ACA frequency to radiation was found to be linear: ACA frequency = 0.2923 (±0.0276) + 0.1846 (±0.0307) × D (correlation coefficient r = 0.9442). As expected, dicentric chromosome (DC) frequencies followed the linear quadratic fit model, with DC frequency = 0.0015 (±0.0013) + 0.0220 (±0.0059) × D + 0.0215 (±0.0018) × D^2 (correlation coefficient r = 0.9982). A correlation curve was prepared for ACA frequency versus DC frequency, resulting in the regression equation y = 1.130x + 0.4051 (R2 = 0.7408; p = 0.0014).

Conclusion

Our results showed an increase in ACA frequency in irradiated lymphocytes with an increase in radiation dose; thus, ACA may serve as a candidate cytogenetic biomarker for radiation biodosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hansson A (1979) Satellite association in human metaphases. A comparative study of normal individuals, patients with Down syndrome and their parents. Hereditas 90:59–83

    Article  CAS  Google Scholar 

  2. Samarth RM, Gandhi P, Pandey H, Maudar KK (2012) Mosaicism for trisomy 21 and ring (21) in a male born to normal parents: a case report. Gene 511(1):109–112

    Article  CAS  Google Scholar 

  3. Yasseen AA, Al-Musawi TA (2001) Metaphase acrocentric associations in mentally retarded patients. Neurosciences (Riyadh) 6:233–237

    CAS  Google Scholar 

  4. Raczkiewicz B, Rozynkowa D, Doraczynski H (1983) Cytogenetic findings in 311 couples with infertility and reproductive disorders. Acta Anthropogenet 7(4):355–366

    CAS  Google Scholar 

  5. Feng X, Liu J, Wang Y, Fu J, Qin Q, Cao Y, Wu Y (2021) Acrocentric chromosome polymorphic variants on Chinese female have possible association with unexplained recurrent pregnancy loss. Reprod Sci 28(2):575–584

    Article  CAS  Google Scholar 

  6. Lezhava TA (1979) Human acrocentric chromosomal associations in old age. Tsitol Genet 13:481–485

    CAS  Google Scholar 

  7. Frolov AK, Sokhin AA, Frolov VK, Lebedinskii AP (1975) Frequency of acrocentric chromosomal associations in children immunized with smallpox vaccine. Tsitologiia 17:1177–1183

    CAS  Google Scholar 

  8. Lytvynets L (2013) Diagnostic significance of cytogenetic markers of asthma in children. Pharm Innov J 2(4):46–49

    Google Scholar 

  9. Živković L, Bajić VP, Žukovec D, Čabarkapa A, Spremo-Potparević B (2013) Alterations of acrocentric chromosomes in peripheral blood lymphocytes in patients with Alzheimer’s disease. Arch Biol Sci Belgrade 65(2):439–445

    Article  Google Scholar 

  10. Gadhia P, Desai B (2016) Frequency of satellite associations of acrocentric chromosomes in oral squamous cell carcinoma patients after 5‑FU and cisplatin treatments. Int J Mol Med Sci 6(1):1–5

    Google Scholar 

  11. Uchida IA, Lee CP, Byrnes EM (1975) Chromosome aberrations induced in vitro by low doses of radiation: nondisjunction in lymphocytes of young adults. Am J Hum Genet 27(3):419–429

    CAS  Google Scholar 

  12. Singh IP, Ghosh PK (1978) Effect of radiation on the nucleolar organizing ability of human acrocentric chromosomes (Proc 14th Int Congr Genet 342)

    Google Scholar 

  13. Henderson AS, Warburton D, Atwood KC (1973) Letter: ribosomal DNA connectives between human acrocentric chromosomes. Nature 245(5420):95–97

    Article  CAS  Google Scholar 

  14. Potapova TA, Unruh JR, Yu Z, Rancati G, Li H, Stampfer MR, Gerton JL (2019) Superresolution microscopy reveals linkages between ribosomal DNA on heterologous chromosomes. J Cell Biol 218(8):2492–2513

    Article  Google Scholar 

  15. Gavrilã L, Marinescu M, Ghetea L, Stefan M, Petrescu A, Talmaci-Basalic R, Gavrila LB, Gavrilã VR (1997) Cytogenetical studies of miners from uranium mines in the western carpathians. Cytologia 62(4):369–376

    Article  Google Scholar 

  16. Yadav JS, Seth N (2000) Effect of diagnostic X‑rays on somatic chromosomes of occupationally exposed workers. Ind J Exp Biol 38(1):46–50

    CAS  Google Scholar 

  17. Caradonna F (2015) Nucleoplasmic bridges and acrocentric chromosome associations as early markers of exposure to low levels of ionising radiation in occupationally exposed hospital workers. Mutagenesis 30(2):269–275

    Article  CAS  Google Scholar 

  18. Luxton JJ, McKenna MJ, Taylor LE, George KA, Zwart SR, Crucian BE, Drel VR, Garrett-Bakelman FE, Mackay MJ, Butler D, Foox J, Grigorev K, Bezdan D, Meydan C, Smith SM, Sharma K, Mason CE, Bailey SM (2020) Temporal telomere and DNA damage responses in the space radiation environment. Cell Rep 33(10):108435

    Article  CAS  Google Scholar 

  19. Savage JR (1988) A comment on the quantitative relationship between micronuclei and chromosomal aberrations. Mutat Res 207:33–36

    Article  CAS  Google Scholar 

  20. De Amicis A, De Sanctis S, Di Cristofaro S, Franchini V, Regalbuto E, Mammana G, Lista F (2014) Dose estimation using dicentric chromosome assay and cytokinesis block micronucleus assay: comparison between manual and automated scoring in triage mode. Health Phys 106:787–797

    Article  CAS  Google Scholar 

  21. Bender MA, Gooch PC (1962) Persistent chromosome aberrations in irradiated human subjects. Radiat Res 16:44–53

    Article  CAS  Google Scholar 

  22. IAEA (2011) EPR-biodosimetry. Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. IAEA, Vienna, Austria

    Google Scholar 

  23. Bhavani M, Tamizh Selvan G, Kaur H, Adhikari JS, Vijayalakshmi J, Venkatachalam P, Chaudhury NK (2014) Dicentric chromosome aberration analysis using Giemsa and centromere specific fluorescence in-situ hybridization for biological dosimetry: An inter- and intra-laboratory comparison in Indian laboratories. Appl Radiat Isot 92:85–90

    Article  CAS  Google Scholar 

  24. Ryan TL, Escalona MB, Smith TL, Albanese J, Iddins CJ, Balajee AS (2019) Optimization and validation of automated dicentric chromosome analysis for radiological/nuclear triage applications. Mutat Res 847:503087

    Article  CAS  Google Scholar 

  25. Zang KD, Back E (1968) Quantitative studies on the arrangement of human metaphase chromosomes. I. Individual features in the association pattern of the acrocentric chromosomes of normal males and females. Cytogenetics 7(6):455–470

    Article  CAS  Google Scholar 

  26. Ainsbury EA, Lloyd DC (2010) Dose estimation software for radiation biodosimetry. Health Phys 98:290–295

    Article  CAS  Google Scholar 

  27. Prokofieva-Belgovskaya AA, Gindilis VM, Grinberg KN, Bogomasov EA, Podugolnikova OA, Isaeva II, Radjabli SI, Cellarius SP, Veschneva IV (1968) Association of acrocentric chromosomes in relation to cell type and age of individuals. Exp Cell Res 49:612–625

    Article  CAS  Google Scholar 

  28. Jacobs PA, Mayer M, Morton NE (1976) Acrocentric chromosome associations in man. Am J Hum Genet 28:567–576

    CAS  Google Scholar 

  29. Zankl H, Zang KD (1979) Quantitative studies on the arrangement of human metaphase chromosomes. VII. The association pattern of acrocentric chromosomes in carriers of Robertsonian translocations and in their relatives with normal karyotypes. Hum Genet 52:119–125

    CAS  Google Scholar 

  30. Galperin H (1969) Number of each type of acrocentric association and probability of its occurrence in human male and female metaphase cells. Cytogenetics 8:439–446

    Article  CAS  Google Scholar 

  31. Trezepizur K, Hubner H, Trzepizur Z (1995) A survey of satellite association formation by human acrocentric chromosomes depending on their Ag-NOR class. J Appl Genet 36:69–80

    Google Scholar 

  32. Yadav JS, Seth N (1998) Effect of NOx on the somatic chromosomes of goldsmiths. Environ Health Perspect 106:643–647

    CAS  Google Scholar 

  33. Yip MY, Fox DP (1981) Variation in pattern and frequency of acrocentric association in normal and trisomy-21 individuals. Hum Genet 59:14–22

    Article  CAS  Google Scholar 

  34. Stenstrand K (1978) Low dose X‑radiation and acrocentric chromosome satellite associations in human lymphocytes. Hereditas 88(1):131–133

    Article  CAS  Google Scholar 

  35. Zedginidze AG, Gvimradze Kh A, Antelava MO, Tsigroshvili ZP, Zakariadze NG (2011) The significance of acrocentric chromosomes association index for assessment of low doses radiation impact on man. Ehkologicheskij Vestnik 1(15):57–65

    Google Scholar 

  36. Ramalho AT, Curado MP, Natarajan AT (1995) Lifespan of human lymphocytes estimated during a sixyear cytogenetic follow-up of individuals accidentally exposed in the 1987 radiological accident in Brazil. Mutat Res 331(1):47–54

    Article  CAS  Google Scholar 

  37. Lee JK, Han EA, Lee SS, Ha WH, Barquinero JF, Lee HR, Cho MS (2012) Cytogenetic biodosimetry for Fukushima travelers after the nuclear power plant accident: no evidence of enhanced yield of dicentrics. J Radiat Res 53(6):876–881

    Article  Google Scholar 

  38. Khvostunov IK, Snigiryova GP, Moiseenko VV, Lloyd DC (2015) A follow-up cytogenetic study of workers highly exposed inside the Chernobyl sarcophagus. Radiat Prot Dosimetry 167(4):405–418

    Article  CAS  Google Scholar 

  39. Rosefort C, Fauth E, Zankl H (2004) Micronuclei induced byaneugens and clastogens in mononucleate and binucleate cells using the cytokinesis block assay. Mutagenesis 19:277–284

    Article  CAS  Google Scholar 

  40. Nefic H, Handzic I (2013) The effect of age, sex, and lifestyle factors on micronucleus frequency in peripheral blood lymphocytes of the Bosnian population. Mutat Res 753:1–11

    Article  CAS  Google Scholar 

  41. Zhang X, Duan H, Gao F, Li Y, Huang C, Niu Y, Gao W, Yu S, Zheng Y (2015) Increased micronucleus, nucleoplasmic bridge, and nuclear bud frequencies in the peripheral blood lymphocytes of diesel engine exhaust-exposed workers. Toxicol Sci 143:408–417

    Article  CAS  Google Scholar 

  42. Tian XL, Zhao H, Cai TJ, Lu X, Chen DQ, Li S, Liu QJ (2016) Dose-effect relationships of nucleoplasmic bridges and complex nuclear anomalies in human peripheral lymphocytes exposed to 60Co γ‑rays at a relatively low dose. Mutagenesis 31(4):425–431

    Article  CAS  Google Scholar 

  43. Romm H, Oestreicher U, Kulka U (2009) Cytogenetic damage analysed by the dicentric assay. Ann Ist Super Sanita 45(3):251–259

    Google Scholar 

  44. Kato TA (2019) Human lymphocyte metaphase chromosome preparation for radiation-induced chromosome aberration analysis. Methods Mol Biol 1984:1–6

    Article  CAS  Google Scholar 

  45. Lusiyanti Y, Syaifudin M, Budiantari T, Purnami S, Ramadhani D (2019) Development of dose-response calibration curve for dicentric chromosome induced by X‑rays. Genome Integr 10:2

    Article  Google Scholar 

  46. Ludovici GM, Cascone MG, Huber T, Chierici A, Gaudio P, de Souza SO, d’Errico F, Malizia A (2021) Cytogenetic bio-dosimetry techniques in the detection of dicentric chromosomes induced by ionizing radiation: a review. Eur Phys J Plus 136:482

    Article  CAS  Google Scholar 

  47. Abe Y, Yoshida MA, Fujioka K, Kurosu Y, Ujiie R, Yanagi A, Tsuyama N, Miura T, Inaba T, Kamiya K, Sakai A (2018) Dose-response curves for analyzing of dicentric chromosomes and chromosome translocations following doses of 1000 mGy or less, based on irradiated peripheral blood samples from five healthy individuals. J Radiat Res 59(1):35–42

    Article  CAS  Google Scholar 

  48. Iwasaki T, Takashima Y, Suzuki T, Yoshida MA, Hayata I (2011) The dose response of chromosome aberrations in human lymphocytes induced in vitro by very low dose γ rays. Radiat Res 175(2):208–213

    Article  CAS  Google Scholar 

  49. Oestreicher U, Endesfelder D, Gomolka M, Kesminiene A, Lang P, Lindholm C, Rößler U, Samaga D, Kulka U (2018) Automated scoring of dicentric chromosomes differentiates increased radiation sensitivity of young children after low dose CT exposure in vitro. Int J Radiat Biol 94:1017–1026

    Article  CAS  Google Scholar 

  50. Rogan PK, Li Y, Wilkins RC, Flegal FN, Knoll JHM (2016) Radiation dose estimation by automated cytogenetic biodosimetry. Radiat Prot Dosimetry 172(1):207–217

    Article  CAS  Google Scholar 

  51. Shirley B, Li Y, Knoll JHM, Rogan PK (2017) Expedited radiation biodosimetry by automated dicentric chromosome identification (ADCI) and dose estimation. J Vis Exp 127:56245

    Google Scholar 

  52. Royba E, Repin M, Pampou S, Karan C, Brenner DJ, Garty G (2019) RABiT-II-DCA: a fully-automateddicentric chromosome assay in multiwell plates. Radiat Res 192(3):311–323

    Article  CAS  Google Scholar 

  53. Balajee AS, Escalona M, Iddins CJ, Shuryak I, Livingston GK, Hanlon D, Dainiak N (2019) Development of electronic training and telescoring tools to increase the surge capacity of dicentric chromosome scorers for radiological/nuclear mass casualty incidents. Appl Radiat Isot 144:111–117

    Article  CAS  Google Scholar 

  54. Alsbeih GA, Al-Hadyan KS, Al-Harbi NM, Bin Judia SS, Moftah BA (2020) Establishing a reference dose-response calibration curve for dicentric chromosome aberrations to assess accidental radiation exposure in saudi arabia. Front Public Health 8:599194

    Article  Google Scholar 

  55. Kreuzer M, Auvinen A, Cardis E, Hall J, Jourdain JR, Laurier D et al (2015) Low-dose ionising radiation and cardiovascular diseases—strategies for molecular epidemiological studies in Europe. Mutat Res Rev Mutat Res 764:90–100

    Article  CAS  Google Scholar 

  56. Redon CE, Dickey JS, Bonner WM, Sedelnikova OA (2009) γ‑H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res 43:1171–1178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the voluntary help of donors in giving blood samples for the study. The financial support from INMAS/DRDO to RMS in terms of the CARS project (ST-CARS/18-19/INM/01) is thankfully acknowledged. The authors are thankful to Director BMHRC, Bhopal, and Director INMAS, Delhi for providing necessary laboratory facilities for the smooth conduct of the study.

Funding

This work was supported by a grant received from INMAS/DRDO to RMS in terms of the CARS project (ST-CARS/18-19/INM/01).

Author information

Authors and Affiliations

Authors

Contributions

RMS and NKC designed the study. RMS and PG generated and analyzed the data, and wrote the manuscript. All authors have reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Ravindra M Samarth.

Ethics declarations

Conflict of interest

R.M. Samarth, P. Gandhi, and N.K. Chaudhury declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samarth, R.M., Gandhi, P. & Chaudhury, N.K. Linear dose response of acrocentric chromosome associations to gamma irradiation in human lymphocytes. Strahlenther Onkol 199, 182–191 (2023). https://doi.org/10.1007/s00066-022-01978-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-022-01978-3

Keywords

Navigation