Skip to main content
Log in

Isodoses—a set theory-based patient-specific QA measure to compare planned and delivered isodose distributions in photon radiotherapy

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

The gamma index and dose–volume histogram (DVH)-based patient-specific quality assurance (QA) measures commonly applied in radiotherapy planning are unable to simultaneously deliver detailed locations and magnitudes of discrepancy between isodoses of planned and delivered dose distributions. By exploiting statistical classification performance measures such as sensitivity or specificity, compliance between a planned and delivered isodose may be evaluated locally, both for organs-at-risk (OAR) and the planning target volume (PTV), at any specified isodose level. Thus, a patient-specific QA tool may be developed to supplement those presently available in clinical radiotherapy.

Materials and methods

A method was developed to locally establish and report dose delivery errors in three-dimensional (3D) isodoses of planned (reference) and delivered (evaluated) dose distributions simultaneously as a function the dose level and of spatial location. At any given isodose level, the total volume of delivered dose containing the reference and the evaluated isodoses is locally decomposed into four subregions: true positive—subregions within both reference and evaluated isodoses, true negative—outside of both of these isodoses, false positive—inside the evaluated isodose but not the reference isodose, and false negatives—inside the reference isodose but not the evaluated isodose. Such subregions may be established over the whole volume of delivered dose. This decomposition allows the construction of a confusion matrix and calculation of various indices to quantify the discrepancies between the selected planned and delivered isodose distributions, over the complete range of values of dose delivered. The 3D projection and visualization of the spatial distribution of these discrepancies facilitates the application of the developed method in clinical practice.

Results

Several clinical photon radiotherapy plans were analyzed using the developed method. In some plans at certain isodose levels, dose delivery errors were found at anatomically significant locations. These errors were not otherwise highlighted—neither by gamma analysis nor by DVH-based QA measures. A specially developed 3D projection tool to visualize the spatial distribution of such errors against anatomical features of the patient aids in the proposed analysis of therapy plans.

Conclusions

The proposed method is able to spatially locate delivery errors at selected isodose levels and may supplement the presently applied gamma analysis and DVH-based QA measures in patient-specific radiotherapy planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DTA:

distance to agreement

DVH:

dose–volume histogram

FN:

false negative

FP:

false positive

MC:

Monte Carlo

TN:

true negative

TP:

true positive

References

  1. Ezzell GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB et al (2003) Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT subcommittee of the AAPM radiation therapy committee. Med Phys 30:2089–2115

    Article  Google Scholar 

  2. Ezzell GA, Burmeister JW, Dogan N, LoSasso TJ, Mechalakos JG, Mihailidis D et al (2009) IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM task group 119. Med Phys 36:5359–5373

    Article  Google Scholar 

  3. Tabor Z, Kabat D, Tomaszuk M, Kycia R, Latała Z (2017) A generic multi-modular phantom for testing geometry of a linac c‑arm as a part of quality control in radiotherapy. Med Phys 44:4989–5000

    Article  CAS  Google Scholar 

  4. Tulik M, Kabat D, Kycia R, Tabor Z, Woszczyna A, Latała Z (2018) A framework for calibration of on-board imagers of medical linear accelerators. Phys Med 47:80–85

    Article  CAS  Google Scholar 

  5. Baran M, Rzecki K, Kabat D, Tulik M, Wydra A, Derda Z et al (2019) A simulation-based method for evaluating geometric tests of a linac c‑arm in quality control in radiotherapy. J Appl Clin Med Phys 20:133–142

    Article  Google Scholar 

  6. Low DA, Moran JM, Dempsey JF, Dong L, Oldham M (2011) Dosimetry tools and techniques for IMRT. Med Phys 38:1313–1338

    Article  Google Scholar 

  7. Moran JM, Dempsey M, Eisbruch A, Fraass BA, Galvin JM, Ibbott GS et al (2011) Safety considerations for IMRT: executive summary. Med Phys 38:5067

    Article  Google Scholar 

  8. Hartford AC, Galvin JM, Beyer DC, Eichler TJ, Ibbott GS, Kavanagh B et al (2012) American college of radiology (ACR) and American society for radiation oncology (ASTRO) practice guideline for intensity-modulated radiation therapy (IMRT). Am J Clin Oncol 35:612–617

    Article  Google Scholar 

  9. Pawlicki T, Yoo S, Court LE, McMillan SK, Rice RK, Russell JD et al (2008) Moving from IMRT QA measurements toward independent computer calculations using control charts. Radiother Oncol 89:330–337

    Article  Google Scholar 

  10. Fan J, Li J, Chen L, Luo W, Du Plessis F, Xiong W et al (2006) A practical Monte Carlo MU verification tool for IMRT quality assurance. Phys Med Biol 51:2503–2514

    Article  CAS  Google Scholar 

  11. Leal A, Sanchez-Doblado F, Arrans R, Rosello J, Pavon EC, Lagares JI (2003) Routine IMRT verification by means of an automated Monte Carlo simulation system. Int J Radiat Oncol Biol Phys 56:58–68

    Article  Google Scholar 

  12. Agnew A, Agnew CE, Grattan MWD, Hounsell AR, McGarry CK (2014) Monitoring daily MLC positional errors using trajectory log files and EPID measurements for IMRT and VMAT deliveries. Phys Med Biol 59:N49–N63

    Article  CAS  Google Scholar 

  13. Rangaraj D, Zhu M, Yang D, Palaniswaamy G, Yaddanapudi S, Wooten OH et al (2013) Catching errors with patient-specific pretreatment machine log file analysis. Pract Radiat Oncol 3:80–90

    Article  Google Scholar 

  14. Stell AM, Li JG, Zeidan OA, Dempsey JF (2004) An extensive log-file analysis of step-and-shoot intensity modulated radiation therapy segment delivery errors. Med Phys 31:1593–1602

    Article  Google Scholar 

  15. Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A et al (2018) Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM task group no. 218. Med Phys 45:e53–e83

    Article  Google Scholar 

  16. Van Dyk J, Barnett RB, Cygler JE, Shragge PC (1993) Commissioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys 26:261–273

    Article  CAS  Google Scholar 

  17. Harms WB Sr, Low DA, Wong JW, Purdy JA (1998) A software tool for the quantitative evaluation of 3D dose calculation algorithms. Med Phys 25:1830–1836

    Article  Google Scholar 

  18. Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661

    Article  CAS  Google Scholar 

  19. Blanck O, Masi L, Damme MC, Hildebrandt G, Dunst J, Siebert FA et al (2015) Film-based delivery quality assurance for robotic radiosurgery: commissioning and validation. Phys Med 31:476–483

    Article  Google Scholar 

  20. Heilemann G, Poppe B, Laub W (2013) On the sensitivity of common gamma-index evaluation methods to MLC misalignments in Rapidarc quality assurance. Med Phys 40:31702

    Article  CAS  Google Scholar 

  21. Tulik M, Kabat D, Baran M, Kycia R, Tabor Z (2019) Use of statistical approaches to improve the quality control of the dose delivery in radiotherapy. Phys Med Biol 64:145018

    Article  Google Scholar 

  22. Olch AJ (2012) Evaluation of the accuracy of 3DVH software estimates of dose to virtual ion chamber and film in composite IMRT QA. Med Phys 39:81–86

    Article  Google Scholar 

  23. Nelms BE, Opp D, Robinson J, Wolf TK, Zhang G, Moros E et al (2012) VMAT QA: measurement-guided 4D dose reconstruction on a patient. Med Phys 39:4228–4238

    Article  Google Scholar 

  24. Stasi M, Bresciani S, Miranti A, Maggio A, Sapino V, Gabriele P (2012) Pretreatment patient-specific IMRT quality assurance: a correlation study between gamma index and patient clinical dose volume histogram. Med Phys 39:7626–7634

    Article  CAS  Google Scholar 

  25. Visser R, Wauben DJ, de Groot M, Steenbakkers RJHM, Bijl HP, Godart J et al (2014) Evaluation of DVH-based treatment plan verification in addition to gamma passing rates for head and neck IMRT. Radiother Oncol 112:389–395

    Article  Google Scholar 

  26. Rodriguez M, Sempau J, Brualla L (2013) PRIMO: a graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther Onkol 189:881–886

    Article  CAS  Google Scholar 

  27. Salvat F, Fernández-Varea JM, Sempau J (2011) PENELOPE 2011—a code system for Monte Carlo simulation of electron and photon transport. OECD Nuclear Energy Agency, Issy-les-Moulineaux

    Google Scholar 

  28. Bosch WR, Straube WL, Matthews JW, Purdy JA (2015) Data from head-neck - cetuximab. Cancer Imaging Arch. https://doi.org/10.7937/K9/TCIA.2015.7AKGJUPZ

    Article  Google Scholar 

  29. Ang KK, Zhang Q, Rosenthal DI, Nguyen-Tan PF, Sherman EJ, Weber RS, Galvin JM, Bonner JA, Harris J, El-Naggar AK, Gillison ML, Jordan RC, Konski AA, Thorstad WL, Trotti A, Beitler JJ, Garden AS, Spanos WJ, Yom SS, Axelrod RS (2014) Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J Clin Oncol 32(27):2940–2950

    Article  CAS  Google Scholar 

  30. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057

    Article  Google Scholar 

  31. Flach P (2012) Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press, Cambridge; New York

    Book  Google Scholar 

  32. Tabor Z, Kabat D, Waligórski A (2021) DeepBeam—a machine learning framework for tuning the primary electron beam of the PRIMO Monte Carlo software. Radiat Oncol 16:124

    Article  Google Scholar 

Download references

Funding

Kinga Jeleń acknowledges the support of InterDokMed project No. POWR.03.02.00-00-I013/16. This work was supported by the POIR.04.04.00-00-15E5/18 project. The POIR.04.04.00-00-15E5/18 project is carried out within the “TEAM-NET” program of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Contributions

MB conceived the work, conducted the simulations, wrote the manuscript and revised it. ZT conceived the work, performed the subsequent analyses, wrote the manuscript and revised it. DK, MT, KJ, and KR conducted the measurements, wrote the manuscript and revised it. MB, BF, KB and RK developed the graphic representation of the isodose analysis and illustrated the clinical examples. MW wrote, edited and revised the manuscript.

Corresponding author

Correspondence to Zbisław Tabor.

Ethics declarations

Conflict of interest

M. Baran, Z. Tabor, D. Kabat, M. Tulik, K. Jeleń, K. Rzecki, B. Forostianyi, K. Bałabuszek, R. Koziarski and M.P. R. Waligórski declare that they have no competing interests.

Supplementary Information

Table S.1.

Summary of 23 plans selected from the Head–Neck Cetuximab. Region of interest (ROI) names according to the DICOM RTStruct files are used. The isodose was selected as the planned dose for planning target volume (PTV) regions and, for organs-at-risk (OAR) regions, by taking the isodose for which the volume of the hot region is the largest. For OAR regions, if for any isodose of the hot region the volume of 0.03 cm3 was not exceeded, N/A was written instead, to indicate that our isodose analysis did not detect any notable hot regions. In the table ∆D5% and ∆D95% are differences between simulated and planned doses to, respectively, 5% and 95% of ROI volume and GPR is gamma passing rate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baran, M., Tabor, Z., Kabat, D. et al. Isodoses—a set theory-based patient-specific QA measure to compare planned and delivered isodose distributions in photon radiotherapy. Strahlenther Onkol 198, 849–861 (2022). https://doi.org/10.1007/s00066-022-01964-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-022-01964-9

Keywords

Navigation