Skip to main content
Log in

Effect of plan complexity on the dosimetry, delivery accuracy, and interplay effect in lung VMAT SBRT with 6 MV FFF beam

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to investigate the effect of plan complexity on the dosimetry, delivery accuracy, and interplay effect in lung stereotactic body radiation therapy (SBRT) using volumetric modulated arc therapy (VMAT) with 6 MV flattening-filter-free (FFF) beam.

Methods

Twenty patients with early stage non-small cell lung cancer were included. For each patient, high-complexity (HC) and low-complexity (LC) three-partial-arc VMAT plans were optimized by adjusting the normal tissue objectives and the maximum monitoring units (MUs) for a Varian TrueBeam linear accelerator (Varian Medical Systems, Palo Alto, CA, USA) using 6 MV FFF beam. The effect of plan complexity was comprehensively evaluated in three aspects: (1) The dosimetric parameters, including CI, D2cm, R50, and dose–volume parameters of organs at risk were compared. (2) The delivery accuracy was assessed by pretreatment quality assurance for two groups of plans. (3) The motion-induced dose deviation was evaluated based on point dose measurements near the tumor center by using a programmable phantom. The standard deviation (SD) and maximum dose difference of five measurements were used to quantify the interplay effect.

Results

The dosimetry of HC and LC plans were similar except the CI (1.003 ± 0.032 and 1.026 ± 0.043, p = 0.030) and Dmax to the spinal cord (10.6 ± 3.2 and 9.9 ± 3.0, p = 0.012). The gamma passing rates were significantly higher in LC plans for all arcs (p < 0.001). The SDs of HC and LC plans ranged from 0.5–16.6% and 0.03–2.9%, respectively, under the conditions of one-field, two-field, and three-field delivery for each plan with 0.5, 1, 2, and 3 cm motion amplitudes. The maximum dose differences of HC and LC plans were 34.5% and 9.1%, respectively.

Conclusion

For lung VMAT SBRT, LC plans have a higher delivery accuracy and a lower motion-induced dose deviation with similar dosimetry compared with HC plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rowell NP, Williams CJ (2001) Radical radiotherapy for stage I/II non-small cell lung cancer in patients not sufficiently fit for or declining surgery (medically inoperable): a systematic review. Thorax 56:628–638. https://doi.org/10.1136/thorax.56.8.628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fakiris AJ, McGarry RC, Yiannoutsos CT et al (2009) Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys 75:677–682. https://doi.org/10.1016/j.ijrobp.2008.11.042

    Article  PubMed  Google Scholar 

  3. Nagata Y, Takayama K, Matsuo Y et al (2005) Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int J Radiat Oncol Biol Phys 63:1427–1431. https://doi.org/10.1016/j.ijrobp.2005.05.034

    Article  PubMed  Google Scholar 

  4. Videtic GM, Paulus R, Singh AK et al (2019) Long-term follow-up on NRG oncology RTOG 0915 (NCCTG N0927): a randomized phase 2 study comparing 2 stereotactic body radiation therapy schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer. Int J Radiat Oncol Biol Phys 103:1077–1084. https://doi.org/10.1016/j.ijrobp.2018.11.051

    Article  PubMed  Google Scholar 

  5. Li J, Galvin J, Harrison A et al (2012) Dosimetric verification using monte carlo calculations for tissue heterogeneity-corrected conformal treatment plans following RTOG 0813 dosimetric criteria for lung cancer stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 84:508–513. https://doi.org/10.1016/j.ijrobp.2011.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ball D, Mai GT, Vinod S et al (2019) Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): a phase 3, open-label, randomised controlled trial. Lancet Oncol 20:494–503. https://doi.org/10.1016/S1470-2045(18)30896-9

    Article  PubMed  Google Scholar 

  7. Ong CL, Dahele M, Slotman BJ et al (2013) Dosimetric impact of the interplay effect during stereotactic lung radiation therapy delivery using flattening filter-free beams and volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys 86:743–748. https://doi.org/10.1016/j.ijrobp.2013.03.038

    Article  PubMed  Google Scholar 

  8. Hernandez V, Hansen CR, Widesott L et al (2020) What is plan quality in radiotherapy? The importance of evaluating dose metrics, complexity, and robustness of treatment plans. Radiother Oncol 153:26–33. https://doi.org/10.1016/j.radonc.2020.09.038

    Article  PubMed  Google Scholar 

  9. Zhang GG, Ku L, Dilling TJ et al (2011) Volumetric modulated arc planning for lung stereotactic body radiotherapy using conventional and unflattened photon beams: a dosimetric comparison with 3D technique. Radiat Oncol 6:152. https://doi.org/10.1186/1748-717X-6-152

    Article  PubMed  PubMed Central  Google Scholar 

  10. Verbakel WF, van den Berg J, Slotman BJ et al (2013) Comparable cell survival between high dose rate flattening filter free and conventional dose rate irradiation. Acta Oncol 52:652–657. https://doi.org/10.3109/0284186X.2012.737021

    Article  PubMed  Google Scholar 

  11. Steenken C, Fleckenstein J, Kegel S et al (2015) Impact of flattening-filter-free radiation on the clonogenic survival of astrocytic cell lines. Strahlenther Onkol 191:590–596. https://doi.org/10.1007/s00066-015-0823-5

    Article  PubMed  Google Scholar 

  12. Baumann P, Nyman J, Lax I et al (2006) Factors important for efficacy of stereotactic body radiotherapy of medically inoperable stage I lung cancer. A retrospective analysis of patients treated in the Nordic countries. Acta Oncol 45:787–795. https://doi.org/10.1080/02841860600904862

    Article  PubMed  Google Scholar 

  13. Sadrollahi A, Nuesken F, Licht N, Rube C, Dzierma Y (2019) Monte-Carlo simulation of the Siemens Artiste linear accelerator flat 6 MV and flattening-filter-free 7 MV beam line. PLoS ONE 14:e210069. https://doi.org/10.1371/journal.pone.0210069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Masi L, Doro R, Favuzza V et al (2013) Impact of plan parameters on the dosimetric accuracy of volumetric modulated arc therapy. Med Phys 40:71718. https://doi.org/10.1118/1.4810969

    Article  PubMed  Google Scholar 

  15. Miften M, Olch A, Mihailidis D et al (2018) Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM task group no. 218. Med Phys 45:e53–e83. https://doi.org/10.1002/mp.12810

    Article  PubMed  Google Scholar 

  16. Das IJ, Ding GX, Ahnesjo A (2008) Small fields: nonequilibrium radiation dosimetry. Med Phys 35:206–215. https://doi.org/10.1118/1.2815356

    Article  PubMed  Google Scholar 

  17. Vieillevigne L, Khamphan C, Saez J et al (2019) On the need for tuning the dosimetric leaf gap for stereotactic treatment plans in the Eclipse treatment planning system. J Appl Clin Med Phys 20:68–77. https://doi.org/10.1002/acm2.12656

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nguyen M, Chan GH (2020) Quantified VMAT plan complexity in relation to measurement-based quality assurance results. J Appl Clin Med Phys 21:132–140. https://doi.org/10.1002/acm2.13048

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ong CL, Verbakel WF, Cuijpers JP et al (2011) Dosimetric impact of interplay effect on RapidArc lung stereotactic treatment delivery. Int J Radiat Oncol Biol Phys 79:305–311. https://doi.org/10.1016/j.ijrobp.2010.02.059

    Article  PubMed  Google Scholar 

  20. Sande EPS, Acosta Roa AM, Hellebust TP (2020) Dose deviations induced by respiratory motion for radiotherapy of lung tumors: impact of CT reconstruction, plan complexity, and fraction size. J Appl Clin Med Phys 21:68–79. https://doi.org/10.1002/acm2.12847

    Article  PubMed  PubMed Central  Google Scholar 

  21. Burton A, Offer K, Hardcastle N (2020) A robust VMAT delivery solution for single-fraction lung SABR utilizing FFF beams minimizing dosimetric compromise. J Appl Clin Med Phys 21:299–304. https://doi.org/10.1002/acm2.12919

    Article  PubMed  PubMed Central  Google Scholar 

  22. Riley C, Yang Y, Li T et al (2014) Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy. Med Phys 41:11715. https://doi.org/10.1118/1.4855956

    Article  PubMed  Google Scholar 

  23. Edvardsson A, Scherman J, Nilsson MP et al (2019) Breathing-motion induced interplay effects for stereotactic body radiotherapy of liver tumours using flattening-filter free volumetric modulated arc therapy. Phys Med Biol 64:25006. https://doi.org/10.1088/1361-6560/aaf5d9

    Article  CAS  PubMed  Google Scholar 

  24. Li G, Jiang W, Li Y et al (2021) Description and evaluation of a new volumetric-modulated arc therapy plan complexity metric. Med Dosim 46:188–194. https://doi.org/10.1016/j.meddos.2020.11.004

    Article  PubMed  Google Scholar 

  25. Fernandez DJ, Sick JT, Fontenot JD (2020) Interplay effects in highly modulated stereotactic body radiation therapy lung cases treated with volumetric modulated arc therapy. J Appl Clin Med Phys 21:58–69. https://doi.org/10.1002/acm2.13028

    Article  PubMed  PubMed Central  Google Scholar 

  26. ICRU (2014) ICRU report 91: prescribing, recording, and reporting of stereotactic treatments with small photon beams. J Int Comm Radiat Units Meas 14(2):1–145

    Google Scholar 

  27. Low DA, Harms WB, Mutic S et al (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661. https://doi.org/10.1118/1.598248

    Article  CAS  PubMed  Google Scholar 

  28. Du W, Cho SH, Zhang X et al (2014) Quantification of beam complexity in intensity-modulated radiation therapy treatment plans. Med Phys 41:21716. https://doi.org/10.1118/1.4861821

    Article  PubMed  Google Scholar 

  29. Wang Y, Pang X, Feng L et al (2018) Correlation between gamma passing rate and complexity of IMRT plan due to MLC position errors. Phys Med 47:112–120. https://doi.org/10.1016/j.ejmp.2018.03.003

    Article  PubMed  Google Scholar 

  30. Rangel A, Dunscombe P (2009) Tolerances on MLC leaf position accuracy for IMRT delivery with a dynamic MLC. Med Phys 36:3304–3309. https://doi.org/10.1118/1.3134244

    Article  PubMed  Google Scholar 

  31. Jiang SB, Pope C, Al Jarrah KM et al (2003) An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments. Phys Med Biol 48:1773–1784. https://doi.org/10.1088/0031-9155/48/12/307

    Article  PubMed  Google Scholar 

  32. Schwarz M, Cattaneo GM, Marrazzo L (2017) Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: a review. Phys Med 36:126–139. https://doi.org/10.1016/j.ejmp.2017.02.011

    Article  PubMed  Google Scholar 

  33. Bortfeld T, Jiang SB, Rietzel E (2004) Effects of motion on the total dose distribution. Semin Radiat Oncol 14:41–51. https://doi.org/10.1053/j.semradonc.2003.10.011

    Article  PubMed  Google Scholar 

  34. Bortfeld T, Jokivarsi K, Goitein M et al (2002) Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation. Phys Med Biol 47:2203–2220. https://doi.org/10.1088/0031-9155/47/13/302

    Article  PubMed  Google Scholar 

  35. Rao M, Wu J, Cao D et al (2012) Dosimetric impact of breathing motion in lung stereotactic body radiotherapy treatment using intensity modulated radiotherapy and volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys 83:e251–e256. https://doi.org/10.1016/j.ijrobp.2011.12.001

    Article  PubMed  Google Scholar 

  36. Keall PJ, Mageras GS, Balter JM et al (2006) The management of respiratory motion in radiation oncology report of AAPM task group 76. Med Phys 33:3874–3900. https://doi.org/10.1118/1.2349696

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghua Shi.

Ethics declarations

Conflict of interest

C. Ge, H. Wang, K. Chen, W. Sun, H. Li and Y. Shi declare that they have no competing interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, C., Wang, H., Chen, K. et al. Effect of plan complexity on the dosimetry, delivery accuracy, and interplay effect in lung VMAT SBRT with 6 MV FFF beam. Strahlenther Onkol 198, 744–751 (2022). https://doi.org/10.1007/s00066-022-01940-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-022-01940-3

Keywords

Navigation