Skip to main content
Log in

Prognostic impact of semantic MRI features on survival outcomes in molecularly subtyped medulloblastoma

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Imaging features are known to reflect inherent disease biology in various cancers including brain tumors. We report on the prognostic impact of magnetic resonance imaging (MRI) features on survival in patients with medulloblastoma treated between 2007 and 2018 at our institute.

Methods

Sixteen semantic imaging features (with predefined categories) were extracted from pre- and postcontrast T1-weighted and T2-weighted MRI by consensus. Univariate analysis and multivariate Cox regression analysis were performed to assess the correlation of semantic features with relapse-free survival (RFS) and overall survival (OS).

Results

The study cohort comprised 171 medulloblastoma patients (median age 9 years) treated with maximal safe resection followed by risk-stratified adjuvant radio(chemo)therapy. A total of 55 patients experienced recurrent/progressive disease (commonly neuraxial metastases) resulting in 44 deaths, including one treatment-related death. At a median follow-up of 45 months (interquartile range 19–65 months), 5‑year Kaplan–Meier estimates of RFS and OS were 64% and 71%, respectively. Semantic MRI features such as non-central tumor location on vertical axis, absence of brainstem involvement, ≤ 80% solid tumor area with contrast uptake, heterogenous pattern of contrast enhancement, necrosis, calcification, and T2-weighted heterogeneity were associated with significantly worse RFS and/or OS in univariate analysis. Cox regression analysis identified tumor location on the vertical axis, brainstem involvement, and calcification as independent prognostic factors impacting outcomes. Distinctive MRI features correlated with survival even within individual molecular subgroups of medulloblastoma.

Conclusion

Distinctive semantic MRI features correlate significantly with survival outcomes in medulloblastoma, also within individual molecular subgroups, reflecting their prognostic impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Leece R, Xu J, Ostrom QT et al (2017) Global incidence of malignant brain and other central nervous system tumors by histology, 2003–2007. Neuro-Oncology 19:1553–1564. https://doi.org/10.1093/neuonc/nox091

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ostrom QT, Patil N, Cioffi G et al (2020) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro-Oncology 22(iv1):iv96. https://doi.org/10.1093/neuonc/noaa200

    Article  Google Scholar 

  3. Northcott PA, Korshunov A, Witt H et al (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29:1408–1414. https://doi.org/10.1200/JCO.2009.27.4324

    Article  PubMed  Google Scholar 

  4. Gajjar A, Bowers DC, Karajannis MA et al (2015) Pediatric brain tumors: innovative genomic information is transforming the diagnostic and clinical landscape. J Clin Oncol 33:2986–2998. https://doi.org/10.1200/JCO.2014.59.9217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gupta T, Shirsat N, Jalali R (2015) Molecular subgrouping of Medulloblastoma: impact upon research and clinical practice. Curr Pediatr Rev 11:106–119. https://doi.org/10.2174/1573396311666150702104030

    Article  CAS  PubMed  Google Scholar 

  6. Taylor MD, Northcott PA, Korshunov A et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–472. https://doi.org/10.1007/s00401-011-0922-z

    Article  CAS  PubMed  Google Scholar 

  7. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  8. Ramaswamy V, Remke M, Bouffet E et al (2016) Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol 131:821–831. https://doi.org/10.1007/s00401-016-1569-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuo MD, Jamshidi N (2014) Behind the numbers: Decoding molecular phenotypes with radiogenomics—Guiding principles and technical considerations. Radiology 270:320–325. https://doi.org/10.1148/radiol.13132195

    Article  PubMed  Google Scholar 

  10. Gillies RJ, Kinahan PE, Hricak H (2015) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  11. Kickingereder P, Andronesi OC (2018) Radiomics, metabolic, and molecular MRI for brain tumors. Semin Neurol 38:32–40. https://doi.org/10.1055/s-0037-1618600

    Article  PubMed  Google Scholar 

  12. Dasgupta A, Gupta T, Pungavkar S et al (2019) Nomograms based on preoperative multiparametric magnetic resonance imaging for prediction of molecular subgrouping in medulloblastoma: results from a radiogenomics study of 111 patients. Neuro-Oncology 21:115–124. https://doi.org/10.1093/neuonc/noy093

    Article  CAS  PubMed  Google Scholar 

  13. Iv M, Zhou M, Shpanskaya K et al (2019) MR imaging-based radiomic signatures of distinct molecular subgroups of Medulloblastoma. AJNR Am J Neuroradiol 40:154–161. https://doi.org/10.3174/ajnr.A5899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yan J, Liu L, Wang W et al (2020) Radiomic features from multi-parameter MRI combined with clinical parameters predict molecular subgroups in patients with Medulloblastoma. Front Oncol 10:558162. https://doi.org/10.3389/fonc.2020.558162

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dasgupta A, Gupta T (2018) Radiogenomics of medulloblastoma: imaging surrogates of molecular biology. J Transl Genet Genom. https://doi.org/10.20517/jtgg.2018.21

    Article  Google Scholar 

  16. Colafati GS, Voicu IP, Carducci C et al (2018) MRI features as a helpful tool to predict the molecular subgroups of medulloblastoma: state of the art. Ther Adv Neurol Disord. https://doi.org/10.1177/1756286418775375

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kunder R, Jalali R, Sridhar E et al (2013) Real-time PCR assay based on the differential expression of microRNAs and protein-coding genes for molecular classification of formalin-fixed paraffin embedded medulloblastomas. Neuro-Oncology 15:1644–1651. https://doi.org/10.1093/neuonc/not123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeltzer PM, Boyett JM, Finlay JL et al (1999) Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children’s Cancer Group 921 randomized phase III study. J Clin Oncol 17:832–845. https://doi.org/10.1200/JCO.1999.17.3.832

    Article  CAS  PubMed  Google Scholar 

  19. Rabasco Meneghetti A, Zwanenburg A, Löck S (2020) Pictures worth more than a thousand words: Prediction of survival in medulloblastoma patients. EBioMedicine 62:103136. https://doi.org/10.1016/j.ebiom.2020.103136

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gibson P, Tong Y, Robinson G et al (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature 468:1095–1099. https://doi.org/10.1038/nature09587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thompson EM, Hielscher T, Bouffet E et al (2016) Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncol 17:484–495. https://doi.org/10.1016/S1470-2045(15)00581-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Law M, Yang S, Babb JS et al (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 25:746–755

    PubMed  PubMed Central  Google Scholar 

  23. Łastowska M, Jurkiewicz E, Trubicka J et al (2015) Contrast enhancement pattern predicts poor survival for patients with non-WNT/SHH medulloblastoma tumours. J Neurooncol 123:65–73. https://doi.org/10.1007/s11060-015-1779-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu S, Wang Y, Xu K et al (2017) Relationship between necrotic patterns in glioblastoma and patient survival: fractal dimension and lacunarity analyses using magnetic resonance imaging. Sci Rep. https://doi.org/10.1038/s41598-017-08862-6

    Article  PubMed  PubMed Central  Google Scholar 

  25. Urberuaga A, Navajas A, Burgos J, Pijoán JI (2006) A review of clinical and histological features of Spanish paediatric medulloblastomas during the last 21 years. Childs Nerv Syst 22:466–474. https://doi.org/10.1007/s00381-005-0004-4

    Article  PubMed  Google Scholar 

  26. Giangaspero F, Wellek S, Masuoka J et al (2006) Stratification of medulloblastoma on the basis of histopathological grading. Acta Neuropathol 112:5–12. https://doi.org/10.1007/s00401-006-0064-x

    Article  PubMed  Google Scholar 

  27. Verma S, Tavaré CJ, Gilles FH (2008) Histologic features and prognosis in pediatric medulloblastoma. Pediatr Dev Pathol 11:337–343. https://doi.org/10.2350/07-09-0353.1

    Article  PubMed  Google Scholar 

  28. Michiwaki Y, Hata N, Mizoguchi M et al (2019) Relevance of calcification and contrast enhancement pattern for molecular diagnosis and survival prediction of gliomas based on the 2016 World Health Organization classification. Clin Neurol Neurosurg 187:105556. https://doi.org/10.1016/j.clineuro.2019.105556

    Article  PubMed  Google Scholar 

  29. Salloum R, Chen Y, Yasui Y et al (2019) Late morbidity and mortality among Medulloblastoma survivors diagnosed across three decades: a report from the childhood cancer survivor study. J Clin Oncol 37:731–740. https://doi.org/10.1200/JCO.18.00969

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge and thank Nazia Bano, Shraddha Churi, and Farnaz Shaikh for their logistic and secretarial assistance during the conduct of the study. We express our gratitude to all patients and their caregivers who participated in the study.

Funding

(i) Intramural grant from Tata Memorial Centre, Mumbai; (ii) Indian Council of Medical Research (ICMR), New Delhi; and (iii) Brain Tumor Foundation (BTF) of India, Mumbai. The funding bodies had no influence on study design, data collection, analysis, interpretation of data, or the manuscript’s writing.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: T. Gupta and R. Jalali conceptualized the study, and A. Dasgupta wrote the study protocol; collection and assembly of data: all authors; data analysis and interpretation: A. Dasgupta, M. Maitre, B. Kalra, and T. Gupta; manuscript writing: A. Dasgupta prepared the initial draft, T. Gupta edited the final draft manuscript; final approval of manuscript: all authors. All the authors are in agreement and accountable for all aspects of the work.

Corresponding author

Correspondence to Tejpal Gupta MD.

Ethics declarations

Conflict of interest

A. Dasgupta, T. Gupta, M. Maitre, B. Kalra, A. Chatterjee, R. Krishnatry, J. Sastri Goda, N. Shirsat, S. Epari, A. Sahay, A. Janu, S. Pungavkar, G. Chinnaswamy, V. Patil, A. Moiyadi, P. Shetty, and R. Jalali declare that they have no competing interests.

Additional information

Presentation

Presented in part at the 12th Virtual Annual Conference of the Indian Society of Neuro-Oncology (ISNOCON-2021) hosted by Christian Medical College, Vellore, India, in April 2021.

Availability of data and material

Data will be made available on request to the corresponding author following institutional ethics committee protocols.

Supplementary Information

Supplementary Table 1: Imaging feature extraction and characterization using conventional MRI

Supplementary Table 2: Distribution of MRI features across various molecular subgroups

Supplementary Table 3: Site of first relapse across the molecular subgroups

Figure S4: Kaplan–Meier curves of relapse-free survival (a) and overall survival (b) for the entire study cohort

66_2021_1889_MOESM5_ESM.tif

Figure S5: Kaplan–Meier curves of relapse-free survival (a) and overall survival (b) stratified by molecular subgrouping in medulloblastoma

66_2021_1889_MOESM6_ESM.tif

Figure S6: Kaplan–Meier curves demonstrating the prognostic impact of semantic MRI features—tumor location on the vertical axis (a), brainstem involvement (b), proportion of solid tumor with contrast uptake (c), pattern of contrast enhancement (d), necrosis (e), and calcification (f) on relapse-free survival in medulloblastoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, A., Gupta, T., Maitre, M. et al. Prognostic impact of semantic MRI features on survival outcomes in molecularly subtyped medulloblastoma. Strahlenther Onkol 198, 291–303 (2022). https://doi.org/10.1007/s00066-021-01889-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-021-01889-9

Keywords

Navigation