Skip to main content

Advertisement

Log in

Hybrid planning techniques for hypofractionated whole-breast irradiation using flattening filter-free beams

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to assess the feasibility of flattening filter-free (FFF) photon beams in hybrid intensity-modulated radiation therapy (H-IMRT) and hybrid volumetric modulated arc therapy (H-VMAT) for left-sided whole-breast radiation therapy with a boost volume (RT) using a hypofractionated dose regimen.

Patients and methods

RT plans of 25 patients with left-sided early-stage breast cancer were created with H‑IMRT and H‑VMAT techniques under breath-hold conditions using 6‑MV FFF beams. In hybrid techniques, three-dimensional conformal radiotherapy (3DCRT) plans were kept as base-dose plans for the VMAT and IMRT plans. In addition, H‑IMRT in step-and-shoot mode was also calculated to assess its achievability with FFF beams.

Results

All hybrid plans achieved the expected target coverage. H‑VMAT showed better coverage and homogeneity index results for the boost target (p < 0.002), while H‑IMRT presented better results for the whole-breast target (p < 0.001). Mean doses to normal tissues were comparable between both plans, while H‑IMRT reduced the low-dose levels to heart and ipsilateral lung (p < 0.05). H‑VMAT revealed significantly better results with regard to monitor units (MU) and treatment time (p < 0.001).

Conclusion

The 6‑MV FFF beam technique is feasible for large-field 3DCRT-based hybrid planning in whole-breast and boost planning target volume irradiation. For breath-hold patients, the H‑VMAT plan is superior to H‑IMRT for hypofractionated dose regimens, with reduced MU and treatment delivery time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Darby S, McGale P, Correa C et al (2011) Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378:1707–1716

    Article  Google Scholar 

  2. Clarke M, Collins R, Darby S et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366:2087–2106

    Article  CAS  PubMed  Google Scholar 

  3. Vinh-Hung V, Verschraegen C (2004) Breast-conserving surgery with or without radiotherapy: pooled-analysis for risks of ipsilateral breast tumor recurrence and mortality. J Natl Cancer Inst 96:115–121

    Article  PubMed  Google Scholar 

  4. Bartelink H, Horiot JC, Poortmans PM et al (2007) Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881–10882 trial. J Clin Oncol 25:3259–3265

    Article  PubMed  Google Scholar 

  5. Jones HA, Antonini N, Hart AM et al (2009) Impact of pathological characteristics on local relapse after breast-conserving therapy: a subgroup analysis of the EORTC boost versus no boost trial. J Clin Oncol 27:4939–4947

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dellas K, Vonthein R, Zimmer J et al (2014) Hypofractionation with simultaneous integrated boost for early breast cancer: results of the German multicenter phase II trial (ARO-2010-01). Strahlenther Onkol 190:646–653

    Article  PubMed  Google Scholar 

  7. Haviland JS, Owen RJ, Dewar JA et al (2013) The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol 4:1086–1094

    Article  Google Scholar 

  8. Whelan TJ, Pignol JP, Levine MN et al (2010) Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med 362:513–520

    Article  CAS  PubMed  Google Scholar 

  9. James ML, Lehman M, Hider PN et al (2010) Fraction size in radiation treatment for breast conservation in early breast cancer. Cochrane Database Syst Rev 7:CD003860. https://doi.org/10.1002/14651858.CD003860.pub3

    Article  PubMed  Google Scholar 

  10. Alford SL, Prassas GN, Vogelesang CR et al (2013) Adjuvant breast radiotherapy using a simultaneous integrated boost: clinical and dosimetric perspectives. J Med Imaging Radiat Oncol 57:222–229

    Article  PubMed  Google Scholar 

  11. Van Parijs H, Reynders T, Heuninckx K et al (2014) Breast conserving treatment for breast cancer: dosimetric comparison of different non-invasive techniques for additional boost delivery. Radiat Oncol 9:36

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bantema-Joppe EJ, Vredeveld EJ, de Bock GH et al (2013) Five year outcomes of hypofractionated simultaneous integrated boost irradiation in breast conserving therapy; patterns of recurrence. Radiother Oncol 108:269–272

    Article  PubMed  Google Scholar 

  13. Balaji K, Yadav P, BalajiSubramanian S et al (2018) Hybrid volumetric modulated arc therapy for chest wall irradiation: for a good plan, get the right mixture. Phys Med 52:86–92. https://doi.org/10.1016/j.ejmp.2018.06.641

    Article  PubMed  Google Scholar 

  14. Balaji K, Subramanian B, Yadav P et al (2016) Radiation therapy for breast cancer: literature review. Med Dosim 41(3):253–257. https://doi.org/10.1016/j.meddos.2016.06.005

    Article  PubMed  Google Scholar 

  15. Filippi AR, Ragona R, Piva C et al (2015) Optimized volumetric modulated arc therapy versus 3D-CRT for early stage mediastinal Hodgkin lymphoma without axillary involvement: a comparison of second cancers and heart disease risk. Int J Radiat Oncol Biol Phys 92(1):161–168. https://doi.org/10.1016/j.ijrobp.2015.02.030

    Article  PubMed  Google Scholar 

  16. Mayo CS, Urie MM, Fitzgerald TJ (2005) Hybrid IMRT plans–concurrently treating conventional and IMRT beams for improved breast irradiation and reduced planning time. Int J Radiat Oncol Biol Phys 61:922–932. https://doi.org/10.1016/j.ijrobp.2004.10.033

    Article  PubMed  Google Scholar 

  17. Jeulink M, Dahele M, Meijnen P et al (2015) Is there a preferred IMRT technique for left-breast irradiation? J Appl Clin Med Phys 16:197–205. https://doi.org/10.1120/jacmp.v16i3.5266

    Article  PubMed Central  Google Scholar 

  18. Chen YG, Li AC, Li WY et al (2017) The feasibility study of a hybrid coplanar arc technique versus hybrid intensity-modulated radiotherapy in treatment of early-stage left-sided breast cancer with simultaneous-integrated boost. J Med Phys 42(1):1–8. https://doi.org/10.4103/jmp.JMP_56_17

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lin J, Yeh D, Yeh H et al (2015) Dosimetric comparison of hybrid volumetric-modulated arc therapy, volumetric-modulated arc therapy and intensity-modulated radiation therapy for left-sided early breast cancer. Med Dosim 40(3):262–267. https://doi.org/10.1016/j.meddos.2015.05.003

    Article  PubMed  Google Scholar 

  20. BalajiSubramanian S, Balaji K, Thirunavukarasu M et al (2016) Bilateral breast irradiation using hybrid Volumetric Modulated Arc Therapy (h-VMAT) technique: a planning case report. Cureus 8(12):e914. https://doi.org/10.7759/cureus.91424

    Article  Google Scholar 

  21. Aly MM, Glatting G, Jahnke L et al (2015) Comparison of breast simultaneous integrated boost (SIB) radiotherapy techniques. Radiat Oncol 10:139. https://doi.org/10.1186/s13014-015-0452-2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jost V, Kretschmer M, Sabatino M et al (2015) Heart dose reduction in breast cancer treatment with simultaneous integrated boost: comparison of treatment planning and dosimetry for a novel hybrid technique and 3D-CRT. Strahlenther Onkol 191:734–741

    Article  PubMed  Google Scholar 

  23. Kragl G, Wetterstedt S, Knausl B et al (2009) Dosimetric characteristics of 6 and 10 MV unflattened photonbeams. Radiother Oncol 93(1):141–146

    Article  CAS  PubMed  Google Scholar 

  24. Sharma SD (2011) Unflattened photon beams from the standard flattening filter free accelerators for radiotherapy: advantages, limitations and challenges. J Med Phys 36(3):123–125

    Article  PubMed  PubMed Central  Google Scholar 

  25. Georg D, Knoos T, McClean B (2011) Current status and future perspective of flattening filter free photon beams. Med Phys 38(3):1280–1293

    Article  PubMed  Google Scholar 

  26. Spruijt KH, Dahele M, Cuijpers JP et al (2013) Flattening filter free vs flattened beams for breast irradiation. Int J Radiat Oncol Biol Phys 85(2):506–513. https://doi.org/10.1016/j.ijrobp.2012.03.040

    Article  PubMed  Google Scholar 

  27. Subramaniam S, Thirumalaiswamy S, Srinivas C et al (2012) Chest wall radiotherapy with volumetric modulated arcs and the potential role of flattening filter free photon beams. Strahlenther Onkol 188:484–491. https://doi.org/10.1007/s00066-012-0075-6

    Article  CAS  PubMed  Google Scholar 

  28. Dobler B, Maier J, Knott B et al (2016) Second Cancer Risk after simultaneous integrated boost radiation therapy of right sided breast cancer with and without flattening filter. Strahlenther Onkol 192:687–695. https://doi.org/10.1007/s00066-016-1025-5

    Article  PubMed  Google Scholar 

  29. Bahrainy M, Kretschmer M, Jost V et al (2016) Treatment of breast cancer with simultaneous integrated boost in hybrid plan technique. Strahlenther Onkol 192:333–341. https://doi.org/10.1007/s00066-016-0960-5

    Article  PubMed  Google Scholar 

  30. White J, Tai A, Arthur D et al (2019) RTOG breast cancer atlas for radiation therapy planning: consensus definitions. https://www.rtog.org/CoreLab/ContouringAtlases/BreastCancerAtlas.aspx. Accessed 15 Apr 2019

  31. Nicolini G, Fogliata A, Clivio A et al (2011) Planning strategies in volumetric modulated arc therapy for breast. Med Phys 38:4025–4031

    Article  Google Scholar 

  32. Nakamura JL, Verhey LJ, Smith V et al (2001) Dose conformity of gamma knife radiosurgery and risk factors for complications. Int J Radiat Oncol Biol Phys 51(5):1313–1319

    Article  CAS  PubMed  Google Scholar 

  33. International Commission on Radiation Units and Measurements (2010) ICRU Report 83: prescribing recording and reporting photon beam intensity modulated radiation therapy (IMRT). ICRU Rep 10(1):1–92

    Google Scholar 

  34. Ohtakara K, Hayashi S, Hoshi H (2011) Dose gradient analyses in linac-based Intracranial stereotactic radiosurgery using Paddick’s gradient index: consideration of the optimal method for plan evaluation. J Radiat Res 52:592–599. https://doi.org/10.1269/jrr.11005

    Article  PubMed  Google Scholar 

  35. Kundrat P, Remmele J, Rennau H (2019) Minimum breast distance largely explains individual variability in doses to contralateral breast from breast-cancer radiotherapy. Radiother Oncol 131:186–191. https://doi.org/10.1016/j.radonc.2018.08.022

    Article  PubMed  Google Scholar 

  36. Koulis TA, Phan T, Olivotto IA (2015) Hypofractionated whole breast radiotherapy: current perspectives. Breast Cancer 7:363–370. https://doi.org/10.2147/BCTT.S81710

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim KS, Shin KH, Choi N, Lee S (2016) Hypofractionated whole breast irradiation: new standard in early breast cancer after breast-conserving surgery. Radiat Oncol J 34(2):81–87. https://doi.org/10.3857/roj.2016.01697

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bentzen SM, Agrawal RK, Aird EG et al (2008) The UK standardisation of breast radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet 9:331–341. https://doi.org/10.1016/S1470-2045(08)70077-9

    Article  CAS  Google Scholar 

  39. Bentzen SM, Agrawal RK, Aird EG et al (2008) The UK standardisation of breast radiotherapy (START) Trial B of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet 371:1098–1107. https://doi.org/10.1016/S0140-6736(08)60348-7

    Article  CAS  PubMed  Google Scholar 

  40. Agrawal RK, Alhasso A, BarrettLee PJ et al (2011) First results of the randomised UK FAST Trial of radiotherapy hypofractionation for treatment of early breast cancer (CRUKE/04/015). Radiother Oncol 100:93–100. https://doi.org/10.1016/j.radonc.2011.06.026

    Article  PubMed  Google Scholar 

  41. Brunt AM, Wheatley D, Yarnold J et al (2016) Acute skin toxicity associated with a 1-week schedule of whole breast radiotherapy compared with a standard 3‑week regimen delivered in the UK FAST-Forward Trial. Radiother Oncol 120:114–118. https://doi.org/10.1016/j.radonc.2016.02.027

    Article  PubMed  PubMed Central  Google Scholar 

  42. Scorsetti M, Alongi F, Fogliata A et al (2012) Phase i–ii study of hypofractionated simultaneous integrated boost using volumetric modulated arc therapy for adjuvant radiation therapy in breast cancer patients: a report of feasibility and early toxicity results in the first 50 treatments. Radiat Oncol 7:145

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhou S, Zhu X, Zhang M et al (2016) Estimation of internal organ motion-induced variance in radiation dose in non-gated radiotherapy. Phys Med Biol 61:8157–8179. https://doi.org/10.1088/0031-9155/61/23/8157

    Article  PubMed  Google Scholar 

  44. Ramasubramanian V, Balaji K, Balaji Subramanian S et al (2019) Hybrid volumetric modulated arc therapy for whole breast irradiation: a dosimetric comparison of different arc designs. Radiol med 124(6):546–554. https://doi.org/10.1007/s11547-019-00994-1

    Article  PubMed  Google Scholar 

  45. Jin G, Chen L, Deng X et al (2013) A comparative dosimetric study for treating left-sided breast cancer for small breast size using five different radiotherapy techniques: conventional tangential field, filed-in-filed, Tangential-IMRT, Multi-beam IMRT and VMAT. Radiat Oncol 8:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Viren T, Heikkilä J, Myllyoja K et al (2015) Tangential volumetric modulated arc therapy technique for left-sided breast cancer radiotherapy. Radiat Oncol 10:79

    Article  PubMed  PubMed Central  Google Scholar 

  47. Haciislamoglu E, Colak F, Canyilmaz E et al (2015) Dosimetric comparison of left-sided whole-breast irradiation with 3DCRT, forward-planned IMRT, inverse-planned IMRT, helical tomotherapy, and volumetric arc therapy. Phys Med 31(4):360–367. https://doi.org/10.1016/j.ejmp.2015.02.005

    Article  PubMed  Google Scholar 

  48. Wang Y, Vassil A, Tendulkar R et al (2014) Feasibility of using nonflat photon beams for whole-breast irradiation with breath hold. J Appl Clin Med Phys 15(1):4397. https://doi.org/10.1120/jacmp.v15i1.4397

    Article  PubMed  Google Scholar 

  49. Hall EJ (2006) Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 65(1):1–7. https://doi.org/10.1016/j.ijrobp.2006.01.027

    Article  PubMed  Google Scholar 

  50. Darby SC, Ewertz M, McGale P et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368(11):987–998. https://doi.org/10.1056/NEJMoa1209825

    Article  CAS  PubMed  Google Scholar 

  51. Gagliardi G, Constine LS, Moiseenko V et al (2010) Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys 76(3):S77–S85. https://doi.org/10.1016/j.ijrobp.2009.04.093

    Article  PubMed  Google Scholar 

  52. Marks LB, Bentzen SM, Deasy JO et al (2010) Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys 76(3):70–76. https://doi.org/10.1016/j.ijrobp.2009.06.091

    Article  Google Scholar 

  53. Blom GU, Wennberg B, Svane G et al (2010) Reduction of radiation pneumonitis by V20-constraints in breast cancer. Radiat Oncol 5:99. https://doi.org/10.1186/1748-717X-5-99

    Article  Google Scholar 

  54. Mah D, Miller E, Kuo H et al (2011) Flattening filter free beams for 3D breast planning. Med Phys 38:3632

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karunakaran Balaji M.Sc..

Ethics declarations

Conflict of interest

K. Balaji, S. Balaji Subramanian, K. Sathiya, M. Thirunavukarasu, C. Anu Radha, and V. Ramasubramanian declare that they have no competing interests.

Ethical standards

The institutional scientific and ethics board has approved this study. This article does not contain any studies with human participants performed by any of the authors. Informed consent was waivered by the ethics board of the institute as this is a retrospective study with no human involved. For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, K., Balaji Subramanian, S., Sathiya, K. et al. Hybrid planning techniques for hypofractionated whole-breast irradiation using flattening filter-free beams. Strahlenther Onkol 196, 376–385 (2020). https://doi.org/10.1007/s00066-019-01555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-019-01555-1

Keywords

Navigation