Radiosurgery of vestibular schwannoma: prognostic factors for hearing outcome using 3D-constructive interference in steady state (3D-CISS)

Radiochirurgie bei Vestibularisschwannom: Prognostische Faktoren für das Hörvermögen bei Akquisition der 3D-CISS

Abstract

Purpose

Stereotactic radiosurgery (SRS) is an effective treatment for vestibular schwannoma (VS). Three-dimensional (3D) constructive interference in steady state (CISS) is the preferred magnetic resonance imaging (MRI) sequence for evaluating signal changes in the inner ear endolymph. Previous studies demonstrated a correlation between pretreatment cochlear signal intensity in 3D-CISS and posttherapeutic hearing outcomes. The purpose of our study was to compare 3D-CISS sequences before and after primary SRS of unilateral VSs to evaluate the effect of radiosurgery on the 3D-CISS signal intensities of cochlea and sacculus/utriculus.

Methods

We retrospectively reviewed 47 patients with unilateral VS treated with SRS. The neuroradiological MRI datasets were analysed to evaluate the signal intensity of the inner ear structure, tumour size, Koos grade, tumour volume, and infiltration of the cochlear aperture before therapy and at follow-up. The differences in these signal intensities before SRS and at follow-up were correlated with clinical symptoms, cochlear radiation dose, tumour volume and infiltration of the cochlear aperture.

Results

No differences were found between signal intensities in cochlea and utriculus/sacculus before and after SRS and no correlation with clinical symptoms, cochlear radiation dose, tumour volume, Koos grade or infiltration of the cochlear aperture (all p > 0.05).

Conclusion

Our study supports the theory of a complex interaction causing alteration of the endolymph protein concentration and not a direct dependency on the SRS. Use of modern dosing schemes will have a positive impact on clinical outcome with preservation of hearing in patients with VS.

Zusammenfassung

Ziel

Stereotaktische Radiochirurgie („stereotactic radiosurgery“, SRS) ist effektiv zur Behandlung des Vestibularisschwannoms (VS). Die 3‑D-CISS-Sequenz („constructive interference in steady state“) ist die Sequenz der Wahl bei der Magnetresonanztomographie (MRT) zur Auswertung von Signalveränderungen der Endolymphe des Innenohrs. Frühere Studien zeigten eine Korrelation zwischen der Signalintensität der Cochlea in der 3‑D-CISS vor Strahlentherapie und dem Hörvermögen nach Bestrahlung. Ziel der vorliegenden Studie war der Vergleich der Signalintensität von Cochlea sowie Sacculus/Utriculus in der 3‑D-CISS-Sequenz vor und nach primärer SRS.

Methoden

Retrospektiv wurden 47 Patienten mit einseitigem VS und SRS-Therapie untersucht. Eine neuroradiologische Analyse der initialen und Verlaufs-MRT mit 3‑D-CISS erfolgte, um die Signalintensität des Innenohrs, Tumorgröße, den Koos-Grad, das Tumorvolumen und die Infiltration der Cochlea-Apertur vor SRS und im Verlauf zu evaluieren. Die Unterschiede der Signalintensität vor SRS und bei der Nachuntersuchung wurden mit den klinischen Symptomen, der applizierten Strahlendosis an der Cochlea, dem Tumorvolumen und der Infiltration der Apertura cochlearis korreliert.

Ergebnisse

Es wurden weder Unterschiede zwischen der Signalintensität in Cochlea und Utriculus/Sacculus vor und nach SRS noch eine Korrelation mit klinischen Symptomen, cochleärer Strahlendosis, Tumorvolumen, Koos-Grad oder Infiltration der Cochlea-Apertur festgestellt (alle p > 0,05).

Schlussfolgerung

Die Studie stützt die Theorie einer komplexen Wechselwirkung, die zur Veränderung der Proteinkonzentration der Endolymphe führt, und nicht die direkte Abhängigkeit von der SRS. Diesen Daten zufolge hat die Anwendung moderner Dosierungsschemata einen positiven Einfluss auf das klinische Ergebnis mit Erhalt des Hörvermögens bei VS-Patienten.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

3D-CISS:

Three-dimensional constructive interference in steady state

CPA:

Cerebellopontine angle

CSF:

Cerebrospinal fluid

dB:

Decibel

FLAIR:

Fluid-attenuated inversion recovery

FoV:

Field of view

Gy:

Gray

IAC:

Internal auditory canal

LVA:

Large vestibular aqueduct syndrome

MPR:

Multiplanar reconstruction

PTA:

Pure-tone audiometry

SRS:

Stereotactic radiosurgery

ST:

Slice thickness

TE:

Echo time

TR:

Repetition time

VS:

Vestibular schwannoma

References

  1. 1.

    Coughlin AR, Willman TJ, Gubbels SP (2018) Systematic review of hearing preservation after radiotherapy for vestibular schwannoma. Otol Neurotol 39:273–283

    Article  Google Scholar 

  2. 2.

    Selters WA, Brackmann DE (1977) Acoustic tumor detection with brain stem electric response audiometry. Arch Otolaryngol 103:181–187

    CAS  Article  Google Scholar 

  3. 3.

    Grayeli AB, Refass A, Smail M, Elgarem H, Kalamarides M, Bouccara D, Sterkers O (2008) Diagnostic value of auditory brainstem responses in cerebellopontine angle tumours. Acta Otolaryngol 128:1096–1100

    Article  Google Scholar 

  4. 4.

    Eckermeier L, Pirsig W, Mueller D (1979) Histopathology of 30 non-operated acoustic schwannomas. Arch Otorhinolaryngol 222:1–9

    CAS  Article  Google Scholar 

  5. 5.

    Johnsson LG, Hawkins JE, Rouse RC (1984) Sensorineural and vascular changes in an ear with acoustic neurinoma. Am J Otolaryngol 5:49–59

    CAS  Article  Google Scholar 

  6. 6.

    Benitez JT, Lopez-Rios G, Novoa V (1967) Bilateral acoustic neuroma. A human temporal bone report. Arch Otolaryngol 86:25–31

    CAS  Article  Google Scholar 

  7. 7.

    Merchant SN, Nadol JB, Schuknecht HF (2010) Schuknecht’s pathology of the ear. McGraw-Hill, New York

    Google Scholar 

  8. 8.

    De Moura LF (1967) Inner ear pathology in acoustic neurinoma. Arch Otolaryngol 85:125–133

    Article  Google Scholar 

  9. 9.

    Mahmud MR, Khan AM, Nadol JB (2003) Histopathology of the inner ear in unoperated acoustic neuroma. Ann Otol Rhinol Laryngol 112:979–986

    Article  Google Scholar 

  10. 10.

    Roosli C, Linthicum FH, Cureoglu S, Merchant SN (2012) Dysfunction of the cochlea contributing to hearing loss in acoustic neuromas: an underappreciated entity. Otol Neurotol 33:473–480

    Article  Google Scholar 

  11. 11.

    Silverstein H, Schuknecht HF (1966) Biochemical studies of inner ear fluid in man. Changes in otosclerosis, Meniere’s disease, and acoustic neuroma. Arch Otolaryngol 84:395–402

    CAS  Article  Google Scholar 

  12. 12.

    Bhadelia RA, Tedesco KL, Hwang S, Erbay SH, Lee PH, Shao W, Heilman C (2008) Increased cochlear fluid-attenuated inversion recovery signal in patients with vestibular schwannoma. AJNR Am J Neuroradiol 29:720–723

    CAS  Article  Google Scholar 

  13. 13.

    Miller ME, Mafee MF, Bykowski J, Alexander TH, Burchette RJ, Mastrodimos B, Cueva RA (2014) Hearing preservation and vestibular schwannoma: Intracochlear FLAIR signal relates to hearing level. Otol Neurotol 35:348–352

    Article  Google Scholar 

  14. 14.

    Somers T, Casselman J, de Ceulaer G, Govaerts P, Offeciers E (2001) Prognostic value of magnetic resonance imaging findings in hearing preservation surgery for vestibular schwannoma. Otol Neurotol 22:87–94

    CAS  Article  Google Scholar 

  15. 15.

    Prabhu V, Kondziolka D, Hill TC, Benjamin CG, Shinseki MS, Golfinos JG, Roland JT Jr, Fatterpekar GM (2018) Preserved cochlear CISS signal is a predictor for hearing preservation in patients treated for vestibular schwannoma with stereotactic radiosurgery. Otol Neurotol 39:628–631

    Article  Google Scholar 

  16. 16.

    Wagner F, Herrmann E, Wiest R, Raabe A, Bernasconi C, Caversaccio M, Vibert D (2018) 3D-constructive interference into steady state (3D-CISS) labyrinth signal alteration in patients with vestibular schwannoma. Auris Nasus Larynx 45:702–710

    Article  Google Scholar 

  17. 17.

    Leksell L (1951) The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 102:316–319

    CAS  PubMed  Google Scholar 

  18. 18.

    Germano IM, Sheehan J, Parish J, Atkins T, Asher A, Hadjipanayis CG, Burri SH, Green S, Olson JJ (2018) Congress of Neurological Surgeons systematic review and evidence-based guidelines on the role of radiosurgery and radiation therapy in the management of patients with vestibular schwannomas. Neurosurgery 82:E49–E51

    Article  Google Scholar 

  19. 19.

    World Medical Association (2013) World medical association declaration of helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191

    Article  Google Scholar 

  20. 20.

    World Health Organization (2014) Deafness prevention. World Health Organization, Geneva (available at: http://www.who.int/deafness/en/)

    Google Scholar 

  21. 21.

    Mathers C, Smith A, Concha M (2003) Global burden of hearing loss in the year 2000. World Health Organization, Geneva, pp 1–30

    Google Scholar 

  22. 22.

    Von Gablenz P, Holube I (2015) Prävalenz von Schwerhörigkeit im Nordwesten Deutschlands: Ergebnisse einer epidemiologischen Untersuchung zum Hörstatus (HÖRSTAT). HNO 63:195–214

    Article  Google Scholar 

  23. 23.

    Tsao MN, Sahgal A, Xu W, De Salles A, Hayashi M, Levivier M, Ma L et al (2017) Stereotactic radiosurgery for vestibular schwannoma: International Stereotactic Radiosurgery society (ISRS) Practice guideline. J Radiosurg SBRT 5:5–24

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Koos W, Spetzler R, Böck F (1976) Microsurgery of cerebellopontine angle tumors. In: Koos W, Spetzler R, Böck F (eds) Clinical microneurosurgery. Thieme, Stuttgart, pp 91–112

    Google Scholar 

  25. 25.

    Valvassori GE, Clemis JD (1978) The large vestibular aqueduct syndrome. Laryngoscope 88:723–728

    CAS  Article  Google Scholar 

  26. 26.

    Thomsen J, Saxtrup O, Tos M (1982) Quantitated determination of proteins in perilymph in patients with acoustic neuromas. ORL J Otorhinolaryngol Relat Spec 44:61–65

    CAS  Article  Google Scholar 

  27. 27.

    Rasmussen N, Bendtzen K, Thomsen J, Tos M (1984) Antigenicity and protein content of perilymph in acoustic neuroma patients. Acta Otolaryngol 97:502–508

    CAS  Article  Google Scholar 

  28. 28.

    Hızlı Ö, Cureoglu S, Kaya S, Schachern PA, Paparella MM, Adams ME (2016) Quantitative vestibular labyrinthine otopathology in temporal bones with vestibular schwannoma. Otolaryngol Head Neck Surg 154:150–156

    Article  Google Scholar 

  29. 29.

    Kim H‑Y (2017) Statistical notes for clinical researchers: chi-squared test and Fisher’s exact test. Restor Dent Endod 42:152

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Franca Wagner MD.

Ethics declarations

Conflict of interest

F. Wagner, M. Gandalini, A. Hakim, E. Ermis, D. Leiser, M. Zbinden, L. Anschuetz, A. Raabe, M. Caversaccio, R. Wiest and E. Herrmann declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wagner, F., Gandalini, M., Hakim, A. et al. Radiosurgery of vestibular schwannoma: prognostic factors for hearing outcome using 3D-constructive interference in steady state (3D-CISS). Strahlenther Onkol 194, 1132–1143 (2018). https://doi.org/10.1007/s00066-018-1361-8

Download citation

Keywords

  • 3D-CISS
  • Labyrinth signal loss
  • Magnetic resonance imaging
  • Vestibular schwannoma
  • Radiosurgery

Schlüsselwörter

  • 3‑D-CISS
  • Signalverlust Labyrinth
  • Magnetresonanztomographie
  • Vestibularisschwannom
  • Radiochirurgie