Advertisement

Strahlentherapie und Onkologie

, Volume 194, Issue 12, pp 1097–1102 | Cite as

Health services research in German radiation oncology: new opportunities to advance cancer care

  • Daniel Medenwald
  • Christian T. Dietzel
  • Dirk Vordermark
Review Article
  • 43 Downloads

Abstract

Background

Health services research (HSR) is of increasing relevance to scientists, health-care providers, and clinicians. Complex population-based secondary data are a key source of information for analyses of health-care effects in radiation oncology.

Methods

In this short paper, we examine potential applications of secondary data focusing on statistics from the diagnosis-related groups (DRG). This data set incorporating all hospitalized cases in Germany is based on claims of reimbursements and is provided by the Research Data Centers (RDC) of the Federal Statistical Office and the Statistical Offices of the federal states. A short outlook regarding other data sources is also presented.

Results

In radiation oncology, secondary data such as the DRG statistics have rarely been used to examine health-care effects, despite their great potential for reporting effects in a broad population-based setting. Furthermore, for most data sources, the application to use these data is accessible with minor effort. However, data concerning outpatient care are difficult to analyze on a comparable level.

Conclusion

DRG statistics and related secondary data provide a remarkable source of information for analyses of health-care-related effects in radiation oncology.

Keywords

Health economics Reimbursement German diagnosis-related groups Cancer registries Population 

Medizinische Versorgungsforschung in der Radioonkologie: neue Optionen für Fortschritte in der Krebsbehandlung

Zusammenfassung

Hintergrund

Versorgungsforschung gewinnt für Wissenschaftler, Gesundheitsdienstleister und Kliniker zunehmend an Relevanz. Komplexe bevölkerungsbasierte Sekundärdaten sind eine wichtige Quelle zur Untersuchung von Versorgungseffekten in der Radioonkologie.

Methoden

In diesem kurzen Artikel untersuchen die Autoren mögliche Anwendungen von Sekundärdaten, wobei der Schwerpunkt auf der fallpauschalenbezogenen Krankenhausstatistik (DRG-Statistik, Diagnosis Related Groups) liegen soll. Dieser Datensatz bezieht alle Krankenhausfälle in Deutschland ein und wird von den Forschungsdatenzentren (FDZ) des Statistischen Bundesamts und der Statistischen Ämter der Länder zur Verfügung gestellt. Ein kurzer Ausblick auf andere Datenquellen wird ebenfalls gegeben.

Ergebnisse

In der Radioonkologie wurden Sekundärdaten, wie z. B. die DRG-Statistik, trotz ihres Potenzials zur Analyse der Versorgungssituation auf einer bevölkerungsbezogenen Ebene bisher nur unzureichend genutzt. Gleichzeitig ist die Nutzung dieser Daten in der Mehrzahl der Fälle mit geringem Aufwand möglich. Allerdings gestaltet sich die Analyse von Daten aus dem ambulanten Bereich deutlich schwieriger.

Schlussfolgerung

Die DRG-Statistik und verwandte Sekundärdaten bieten eine bedeutende Quelle für Analysen gesundheitsbezogener Effekte in der Radioonkologie.

Schlüsselwörter

Gesundheitsöknomie Vergütung diagnosebezogene Gruppen (DRG) Krebsegister Bevölkerung 

Notes

Conflict of interest

D. Medenwald, C.T. Dietzel, and D. Vordermark declare that they have no competing interests.

References

  1. 1.
    Kaatsch P (2015) Krebs in Deutschland 2011/12. Robert Koch-Institut und Gesellschaft der epidemiologischenKrebsregister in Deutschland e. V., BerlinGoogle Scholar
  2. 2.
    Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104:1129–1137CrossRefGoogle Scholar
  3. 3.
    Lievens Y, Grau C (2012) Health economics in radiation oncology: introducing the ESTRO HERO project. Radiother Oncol 103:109–112CrossRefGoogle Scholar
  4. 4.
    Borras JM, Lievens Y, Barton M et al (2016) How many new cancer patients in Europe will require radiotherapy by 2025? An ESTRO-HERO analysis. Radiother Oncol 119:5–11CrossRefGoogle Scholar
  5. 5.
    Lievens Y, Defourny N, Coffey M et al (2014) Radiotherapy staffing in the European countries: final results from the ESTRO-HERO survey. Radiother Oncol 112:178–186CrossRefGoogle Scholar
  6. 6.
    Lohr KN, Steinwachs DM (2002) Health services research: an evolving definition of the field. Health Serv Res 37:7–9PubMedGoogle Scholar
  7. 7.
    Data supply | Diagnosis-Related Group Statistics (DRG Statistics) (2016) Research data centres of the federal statistical office and the statistical offices of the federal states. http://www.forschungsdatenzentrum.de/en/database/drg/index.asp Google Scholar
  8. 8.
    Glocker S, Loskamp N, Bamberg M, Roeder N (2006) Evaluation of flat-rate payment in radiation oncology. German experience with disease-related groups for inpatient funding in radiation oncology. Strahlenther Onkol 182:305–311CrossRefGoogle Scholar
  9. 9.
    Wong K, Delaney GP, Barton MB (2016) Evidence-based optimal number of radiotherapy fractions for cancer: A useful tool to estimate radiotherapy demand. Radiother Oncol 119:145–149CrossRefGoogle Scholar
  10. 10.
    Schubert-Fritschle G, Combs SE, Kirchner T, Nüssler V, Engel J (2017) Use of multicenter data in a large cancer registry for evaluation of outcome and implementation of novel concepts. Front Oncol 7:234CrossRefGoogle Scholar
  11. 11.
    Schmidberger H (2017) Reimbursement of radiotherapy in Germany. Cancer Radiother 21:544–546CrossRefGoogle Scholar
  12. 12.
    Dasch B, Kalies H, Feddersen B, Ruderer C, Hiddemann W, Bausewein C (2017) Care of cancer patients at the end of life in a German university hospital: a retrospective observational study from 2014. PLoS ONE 12:e175124CrossRefGoogle Scholar
  13. 13.
    Reinhold T, Dornquast C, Börgermann C, Weißbach L (2016) Treatment costs of localized prostate cancer in Germany: economic results from the HAROW observational study. Urologe A 55:1573–1585CrossRefGoogle Scholar
  14. 14.
    Bekelman JE, Halpern SD, Blankart CR et al (2016) Comparison of site of death, health care utilization, and hospital expenditures for patients dying with cancer in 7 developed countries. JAMA 315:272–283CrossRefGoogle Scholar
  15. 15.
    Berger B, Ankele H, Bamberg M, Zips D (2014) Patients who die during palliative radiotherapy. Status survey. Strahlenther Onkol 190:217–220CrossRefGoogle Scholar
  16. 16.
    Frenzel T, Krull A (2015) The use of IMRT in Germany. Strahlenther Onkol 191:821–826CrossRefGoogle Scholar
  17. 17.
    Marnitz S, Köhler C, Rauer A et al (2014) Patterns of care in patients with cervical cancer 2012: results of a survey among German radiotherapy departments and out-patient health care centers. Strahlenther Onkol 190:34–40CrossRefGoogle Scholar
  18. 18.
    Datta NR, Khan S, Marder D, Zwahlen D, Bodis S (2020) Radiotherapy infrastructure and human resources in Switzerland : present status and projected computations for. Strahlenther Onkol 2016(192):599–608Google Scholar
  19. 19.
    Zurl B, Bayerl A, De Vries A et al (2018) ÖGRO survey on radiotherapy capacity in Austria: status quo and estimation of future demands. Strahlenther Onkol 194:284–292CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Daniel Medenwald
    • 1
    • 2
  • Christian T. Dietzel
    • 1
  • Dirk Vordermark
    • 1
  1. 1.Department of Radiation OncologyUniversity Hospital Halle (Saale)Halle (Saale)Germany
  2. 2.Institute of Medical Epidemiology, Biostatistics and InformaticsMartin-Luther-University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations