Skip to main content

Advertisement

Log in

MRI-based high-precision irradiation in an orthotopic pancreatic tumor mouse model

A treatment planning study

MRT-basierte Hochpräzisionsstrahlentherapie im orthotopen Pankreastumor-Mausmodell

Eine Bestrahlungsplanungsstudie

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

Recently, imaging and high-precision irradiation devices for preclinical tumor models have been developed. Image-guided radiation therapy (IGRT) including innovative treatment planning techniques comparable to patient treatment can be achieved in a translational context. The study aims to evaluate magnetic resonance imaging/computed tomography (MRI/CT)-based treatment planning with different treatment techniques for high-precision radiation therapy (RT).

Materials and methods

In an orthotopic pancreatic cancer model, MRI/CT-based radiation treatment planning was established. Three irradiation techniques (rotational, 3D multifield, stereotactic) were performed with the SARRP system (Small Animal Radiation Research Platform, Xstrahl Ltd., Camberley, UK). Dose distributions in gross tumor volume (GTV) and organs at risk (OAR) were analyzed for each treatment setting.

Results

MRI with high soft tissue contrast improved imaging of GTV and OARs. Therefore MRI-based treatment planning enables precise contouring of GTV and OARs, thus, providing a perfect basis for an improved dose distribution and coverage of the GTV for all advanced radiation techniques.

Conclusion

An MRI/CT-based treatment planning for high-precision IGRT using different techniques was established in an orthotopic pancreatic tumor model. Advanced radiation techniques allow considering perfect coverage of GTV and sparing of OARs in the preclinical setting and reflect clinical treatment plans of pancreatic cancer patients.

Zusammenfassung

Hintergrund und Zielsetzung

Die aktuelle Entwicklung bildgebender Verfahren und moderner Setups der Hochpräzisionsstrahlentherapie speziell für Kleintiere als präklinische Tumormodelle ermöglicht innovative bildgeführte Bestrahlungstechniken und Bestrahlungsplanung wie in der Therapie menschlicher Patienten sowie Dosisapplikation mit höchster Zielgenauigkeit. Das Ziel dieser Arbeit ist die Evaluation einer Magnetresonanztomographie-/Computertomographie(MRT/CT)-gestützten Bestrahlungsplanung mit verschiedenen Bestrahlungstechniken zur Hochpräzisionsstrahlentherapie.

Methoden

In einem orthotopen Pankreastumor-Mausmodell wurde eine MRT-/CT-basierte Bestrahlungsplanung etabliert. Drei Bestrahlungstechniken (Rotations-, 3‑D-Mehrfeld, stereotaktische Bestrahlung) wurden mit dem SARRP (Small Animal Radiation Research Platform, Fa. Xstrahl Ltd., Camberley, UK) durchgeführt. Die Analyse der Dosisverteilung im makroskopischen Tumorvolumen („gross tumor volume“, GTV) sowie der Risikoorgane erfolgte für jedes einzelne Bestrahlungssetting.

Ergebnisse

Durch die Ergänzung der Bildgebung mittels MRT mit höherem Weichteilkontrast verbesserte sich die Darstellung des GTV und aller Risikoorgane. Die MRT-basierte Bestrahlungsplanung ermöglicht dadurch ein exaktes Konturieren von Tumorvolumen und Risikoorganen als perfekte Basis für eine verbesserte Dosisverteilung und Abdeckung des Zielvolumens in allen Bestrahlungstechniken im präklinischen Tumor-Mausmodell.

Schlussfolgerung

Mit Einsatz verschiedener Techniken wurde eine MRT-/CT-basierte Bestrahlungsplanung zur bildgestützten Hochpräzisionsstrahlentherapie in einem orthotopen Pankreastumor-Mausmodell etabliert. Moderne Bestrahlungstechniken ermöglichen eine perfekte Abdeckung des GTV bei gleichzeitiger Schonung der Risikoorgane im präklinischen Rahmen und ähneln den klinischen Bestrahlungsplänen von Patienten mit Pankreaskarzinom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Quante AS, Ming C, Rottmann M, Engel J, Boeck S, Heinemann V, Westphalen CB, Strauch K (2016) Projections of cancer incidence and cancer-related deaths in Germany by 2020 and 2030. Cancer Med 5(9):2649–2656

    Article  Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics. Ca Cancer J Clin 60(5):277–300

    Article  Google Scholar 

  3. Hartwig W, Hackert T, Hinz U, Gluth A, Bergmann F, Strobel O, Buchler MW, Werner J (2011) Pancreatic cancer surgery in the new millennium: better prediction of outcome. Ann Surg 254(2):311–319

    Article  Google Scholar 

  4. Combs SE, Habermehl D, Kessel K, Bergmann F, Werner J, Brecht I, Schirmacher P, Jager D, Buchler MW, Debus J (2013) Intensity modulated radiotherapy as neoadjuvant chemoradiation for the treatment of patients with locally advanced pancreatic cancer. Outcome analysis and comparison with a 3D-treated patient cohort. Strahlenther Onkol 189(9):738–744

    Article  CAS  Google Scholar 

  5. Dobiasch S, Goerig NL, Fietkau R, Combs SE (2017) Essential role of radiation therapy for the treatment of pancreatic cancer: novel study concepts and established treatment recommendations. Strahlenther Onkol 194(3):185–195. https://doi.org/10.1007/s00066-017-1227-5

    Article  PubMed  Google Scholar 

  6. Wong J, Armour E, Kazanzides P, Iordachita I, Tryggestad E, Deng H, Matinfar M, Kennedy C, Liu Z, Chan T et al (2008) High-resolution, small animal radiation research platform with x‑ray tomographic guidance capabilities. Int J Radiat Oncol Biol Phys 71(5):1591–1599

    Article  Google Scholar 

  7. Dobiasch S, Kampfer S, Burkhardt R, Schilling D, Schmid TE, Wilkens JJ, Combs SE (2017) BioXmark for high-precision radiotherapy in an orthotopic pancreatic tumor mouse model: experiences with a liquid fiducial marker. Strahlenther Onkol 193(12):1039–1047. https://doi.org/10.1007/s00066-017-1193-y

    Article  CAS  PubMed  Google Scholar 

  8. Dobiasch S, Szanyi S, Kjaev A, Werner J, Strauss A, Weis C, Grenacher L, Kapilov-Buchman K, Israel LL, Lellouche JP et al (2016) Synthesis and functionalization of protease-activated nanoparticles with tissue plasminogen activator peptides as targeting moiety and diagnostic tool for pancreatic cancer. J Nanobiotechnology 14(1):81

    Article  Google Scholar 

  9. Rosenberger I, Strauss A, Dobiasch S, Weis C, Szanyi S, Gil-Iceta L, Alonso E, Gonzalez Esparza M, Gomez-Vallejo V, Szczupak B et al (2015) Targeted diagnostic magnetic nanoparticles for medical imaging of pancreatic cancer. J Control Release 214:76–84

    Article  CAS  Google Scholar 

  10. Burnet NG, Thomas SJ, Burton KE, Jefferies SJ (2004) Defining the tumour and target volumes for radiotherapy. Cancer Imaging 4(2):153–161

    Article  Google Scholar 

  11. Buwenge M, Cilla S, Guido A, Giaccherini L, Macchia G, Deodato F, Cammelli S, Cellini F, Mattiucci GC, Valentini V et al (2016) Individually optimized stereotactic radiotherapy for pancreatic head tumors: a planning feasibility study. Rep Pract Oncol Radiother 21(6):548–554

    Article  Google Scholar 

  12. Verhaegen F, van Hoof S, Granton PV, Trani D (2014) A review of treatment planning for precision image-guided photon beam pre-clinical animal radiation studies. Z Med Phys 24(4):323–334

    Article  Google Scholar 

  13. Tillner F, Thute P, Lock S, Dietrich A, Fursov A, Haase R, Lukas M, Rimarzig B, Sobiella M, Krause M et al (2016) Precise image-guided irradiation of small animals: a flexible non-profit platform. Phys Med Biol 61(8):3084–3108

    Article  CAS  Google Scholar 

  14. Verhaegen F, Granton P, Tryggestad E (2011) Small animal radiotherapy research platforms. Phys Med Biol 56(12):R55–83

    Article  Google Scholar 

  15. Bazalova M, Nelson G, Noll JM, Graves EE (2014) Modality comparison for small animal radiotherapy: a simulation study. Med Phys 41(1):11710

    Article  Google Scholar 

Download references

Funding

This work was funded in part by research support for SD within the KKF (“Kommission für Klinische Forschung”), Medical Faculty of the Technical University of Munich (TUM) and by the European Union’s Seventh Program for research, technological development and demonstration under grant agreement no 263307 (SaveMe large-scale collaborative project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Combs.

Ethics declarations

Conflict of interest

S. Dobiasch, S. Kampfer, D. Habermehl, M.N. Duma, K. Felix, A. Strauss, D. Schilling, J.J. Wilkens and S.E. Combs declare that they have no competing interests.

Ethical standards

All applicable international, national and institutional guidelines for the care and use of laboratory animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobiasch, S., Kampfer, S., Habermehl, D. et al. MRI-based high-precision irradiation in an orthotopic pancreatic tumor mouse model. Strahlenther Onkol 194, 944–952 (2018). https://doi.org/10.1007/s00066-018-1326-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-018-1326-y

Keywords

Schlüsselwörter

Navigation