Inclusion of dosimetric data as covariates in toxicity-related radiogenomic studies

A systematic review
  • Noorazrul Yahya
  • Xin-Jane Chua
  • Hanani A. Manan
  • Fuad Ismail
Original Article
  • 4 Downloads

Abstract

Purpose

This systematic review evaluates the completeness of dosimetric features and their inclusion as covariates in genetic-toxicity association studies.

Materials and methods

Original research studies associating genetic features and normal tissue complications following radiotherapy were identified from PubMed. The use of dosimetric data was determined by mining the statement of prescription dose, dose fractionation, target volume selection or arrangement and dose distribution. The consideration of the dosimetric data as covariates was based on the statement mentioned in the statistical analysis section. The significance of these covariates was extracted from the results section. Descriptive analyses were performed to determine their completeness and inclusion as covariates.

Results

A total of 174 studies were found to satisfy the inclusion criteria. Studies published ≥2010 showed increased use of dose distribution information (p = 0.07). 33% of studies did not include any dose features in the analysis of gene-toxicity associations. Only 29% included dose distribution features as covariates and reported the results. 59% of studies which included dose distribution features found significant associations to toxicity.

Conclusion

A large proportion of studies on the correlation of genetic markers with radiotherapy-related side effects considered no dosimetric parameters. Significance of dose distribution features was found in more than half of the studies including these features, emphasizing their importance. Completeness of radiation-specific clinical data may have increased in recent years which may improve gene-toxicity association studies.

Keywords

Radiotherapy Genetic association studies Dose-response relationship, radiation Radiation effects Genetic testing 

Verwendung von dosimetrischen Daten als Kovariaten in Studien zur Korrelation von genetischen Parametern mit Nebenwirkungen der Strahlentherapie

Ein systematischer Review

Zusammenfassung

Zielsetzung

Dieser systematische Review untersucht die Verwendung und den Nutzen dosimetrischer Parameter als Kovariaten in Studien, die genetische Informationen mit dem Auftreten von Nebenwirkungen der Strahlentherapie assoziieren.

Material und Methoden

Originalarbeiten, die genetische Parameter mit Normalgewebekomplikationen nach Strahlentherapie verknüpfen, wurden unter Verwendung von PubMed identifiziert. Die Verwendung von dosimetrischen Daten wurde anhand von Angaben zur verschriebenen Dosis, der Fraktionierung, der Zielvolumenauswahl oder der Dosisverteilung geprüft. Ob diese Daten als Kovariaten in der Modellierung zur Anwendung kamen, wurde im Statistikteil der jeweiligen Arbeit geprüft. Die Korrelation mit der betrachteten Nebenwirkung wurde dem Ergebnissteil entnommen. Mittels deskriptiver Statistik wurden die Verwendung von dosimetrischen Parametern und deren prognostischer Wert zusammengefasst.

Ergebnisse

Insgesamt 174 Studien erfüllten die Einschlusskriterien. Studien, die ab 2010 veröffentlicht wurden, schlossen häufiger Informationen zur Dosisverteilung ein (p = 0,07). Von den Studien zur Vorhersage von Nebenwirkungen anhand von genetischen Daten berücksichtigten 33 % keine Dosisparameter. Nur 29 % schlossen dosimetrische Parameter ein und zeigten deren Ergebnisse. In 59 % dieser Studien waren die dosimetrischen Parameter signifikant mit der betrachteten Nebenwirkung korreliert.

Schlussfolgerung

Ein großer Anteil an Studien zur Korrelation von genetischen Markern mit strahlentherapiebedingten Nebenwirkungen berücksichtigte keine dosimetrischen Parameter. Ein signifikanter Einfluss dieser Parameter wurde jedoch in über 50 % aller Studien gefunden, die diese eingeschlossen hatten, was deren Relevanz unterstreicht. Die Nutzung dosimetrischer Parameter hat sich in den letzten Jahren erhöht, was zur Verbesserung entsprechender Studien geführt haben könnte.

Schlüsselwörter

Strahlentherapie Genetische Assoziationsstudien Dosis-Wirkungs-Beziehung, Bestrahlung Bestrahlungseffekte Gentest 

Notes

Acknowledgments

We acknowledge funding from the National University of Malaysia (GGPM-2017-095). We thank Steffen Lock and Muaz Azhari for the German translations.

Compliance with ethical guidelines

Conflict of interest

N. Yahya, X.J. Chua, H.A. Manan and F. Ismail declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

66_2018_1303_MOESM1_ESM.xlsx (38 kb)
Supplementary Material A: Final studies included in the analyses

References

  1. 1.
    Kerns SL, Kundu S, Oh JH et al (2015) The prediction of radiotherapy toxicity using single nucleotide polymorphism—based models: a step toward prevention. Semin Radiat Oncol.  https://doi.org/10.1016/j.semradonc.2015.05.006 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Rosenstein BS (2017) Radiogenomics: identification of genomic predictors for radiation toxicity. Semin Radiat Oncol 27:300–309CrossRefPubMedGoogle Scholar
  3. 3.
    Rosenstein BS, West CM, Bentzen SM et al (2014) Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol Biol Phys 89:709–713CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Reuther S, Szymczak S, Raabe A et al (2014) Association between SNPs in defined functional pathways and risk of early or late toxicity as well as individual radiosensitivity. Strahlenther Onkol 191:59–66CrossRefPubMedGoogle Scholar
  5. 5.
    Lambin P, van Stiphout RGPM, Starmans MHW et al (2012) Predicting outcomes in radiation oncology—multifactorial decision support systems. Nat Rev Clin Oncol 10:27–40CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Peeken JC, Nüsslin F, Combs SE (2017) “Radio-oncomics”. Strahlenther Onkol 193:767–779CrossRefPubMedGoogle Scholar
  7. 7.
    Matsuo Y, Shibuya K, Nakamura M et al (2012) Dose–volume metrics associated with radiation pneumonitis after stereotactic body radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys 83:e545–e549CrossRefPubMedGoogle Scholar
  8. 8.
    Wang S, Liao Z, Wei X et al (2006) Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 66:1399–1407CrossRefPubMedGoogle Scholar
  9. 9.
    Asakura H, Hashimoto T, Zenda S et al (2010) Analysis of dose–volume histogram parameters for radiation pneumonitis after definitive concurrent chemoradiotherapy for esophageal cancer. Radiother Oncol 95:240–244CrossRefPubMedGoogle Scholar
  10. 10.
    Yahya N, Ebert MA, Bulsara M et al (2015) Urinary symptoms following external beam radiotherapy of the prostate: dose–symptom correlates with multiple-event and event-count models. Radiother Oncol 117:277–282CrossRefPubMedGoogle Scholar
  11. 11.
    Valdagni R, Vavassori V, Rancati T et al (2012) Increasing the risk of late rectal bleeding after high-dose radiotherapy for prostate cancer: the case of previous abdominal surgery. Results from a prospective trial. Radiother Oncol 103:252–255CrossRefPubMedGoogle Scholar
  12. 12.
    Roeder F, Friedrich J, Timke C et al (2010) Correlation of patient-related factors and dose-volume histogram parameters with the onset of radiation pneumonitis in patients with small cell lung cancer. Strahlenther Onkol 186:149–156CrossRefPubMedGoogle Scholar
  13. 13.
    Yoon H, Oh D, Park HC et al (2013) Predictive factors for gastroduodenal toxicity based on endoscopy following radiotherapy in patients with hepatocellular carcinoma. Strahlenther Onkol 189:541–546CrossRefPubMedGoogle Scholar
  14. 14.
    Takahashi S, Go T, Kasai Y, Yokomise H, Shibata T (2016) Relationship between dose–volume parameters and pulmonary complications after neoadjuvant chemoradiotherapy followed by surgery for lung cancer. Strahlenther Onkol 192:658–667CrossRefPubMedGoogle Scholar
  15. 15.
    Chen WS, Townsend JP, James BY (2017) Radiation-specific clinical data should be included in existing large-scale genomic datasets. Int J Radiat Oncol Biol Phys 98:8–10CrossRefPubMedGoogle Scholar
  16. 16.
    Guo Z, Shu Y, Wang H, Zhou H, Zhang W (2015) Radiogenomics helps to achieve personalized therapy by evaluating patient responses to radiation treatment. Carcinogenesis 36:307–317CrossRefPubMedGoogle Scholar
  17. 17.
    Bentzen SM, Parliament M, Deasy JO et al (2010) Biomarkers and surrogate endpoints for normal-tissue effects of radiation therapy: the importance of dose–volume effects. Int J Radiat Oncol Biol Phys 76:S145–S150CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dörr W, Herrmann T, Baumann M (2014) Application of organ tolerance dose-constraints in clinical studies in radiation oncology. Strahlenther Onkol 190:621–627CrossRefPubMedGoogle Scholar
  19. 19.
    West CM, Barnett GC (2011) Genetics and genomics of radiotherapy toxicity: towards prediction. Genome Med 3:1CrossRefGoogle Scholar
  20. 20.
    Kerns SL, De Ruysscher D, Andreassen CN et al (2014) STROGAR—strengthening the reporting of genetic association studies in radiogenomics. Radiother Oncol 110:182–188CrossRefPubMedGoogle Scholar
  21. 21.
    Bentzen SM, Constine LS, Deasy JO et al (2010) Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys 76:S3–S9CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mehta V (2005) Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 63:5–24CrossRefPubMedGoogle Scholar
  23. 23.
    Roach M 3rd, Gandara DR, Yuo HS et al (1995) Radiation pneumonitis following combined modality therapy for lung cancer: analysis of prognostic factors. J Clin Oncol 13:2606–2612CrossRefPubMedGoogle Scholar
  24. 24.
    Zhao J, Yorke ED, Li L et al (2016) Simple factors associated with radiation-induced lung toxicity after stereotactic body radiation therapy of the thorax: a pooled analysis of 88 studies. Int J Radiat Oncol Biol Phys 95:1357–1366CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Marks LB, Bentzen SM, Deasy JO et al (2010) Radiation dose–volume effects in the lung. Int J Radiat Oncol Biol Phys 76:S70–S76CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yahya N, Ebert MA, House MJ et al (2017) Modeling urinary dysfunction after external beam radiation therapy of the prostate using bladder dose-surface maps: evidence of spatially variable response of the bladder surface. Int J Radiat Oncol Biol Phys 97:420–426CrossRefPubMedGoogle Scholar
  27. 27.
    Wortel RC, Witte MG, van der Heide UA et al (2015) Dose–surface maps identifying local dose-effects for acute gastrointestinal toxicity after radiotherapy for prostate cancer. Radiother Oncol 117:515–520CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Health SciencesThe National University of MalaysiaKuala LumpurMalaysia
  2. 2.Radiology DepartmentThe National University of MalaysiaKuala LumpurMalaysia
  3. 3.Radiotherapy & Oncology DepartmentThe National University of MalaysiaKuala LumpurMalaysia

Personalised recommendations