Skip to main content

Advertisement

Log in

Treatment-related features improve machine learning prediction of prognosis in soft tissue sarcoma patients

Therapieinformationen verbessern auf maschinellem Lernen basierende prognostische Einschätzungen für Patienten mit Weichteilsarkomen

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

Current prognostic models for soft tissue sarcoma (STS) patients are solely based on staging information. Treatment-related data have not been included to date. Including such information, however, could help to improve these models.

Materials and methods

A single-center retrospective cohort of 136 STS patients treated with radiotherapy (RT) was analyzed for patients’ characteristics, staging information, and treatment-related data. Therapeutic imaging studies and pathology reports of neoadjuvantly treated patients were analyzed for signs of response. Random forest machine learning-based models were used to predict patients’ death and disease progression at 2 years. Pre-treatment and treatment models were compared.

Results

The prognostic models achieved high performances. Using treatment features improved the overall performance for all three classification types: prediction of death, and of local and systemic progression (area under the receiver operatoring characteristic curve (AUC) of 0.87, 0.88, and 0.84, respectively). Overall, RT-related features, such as the planning target volume and total dose, had preeminent importance for prognostic performance. Therapy response features were selected for prediction of disease progression.

Conclusions

A machine learning-based prognostic model combining known prognostic factors with treatment- and response-related information showed high accuracy for individualized risk assessment. This model could be used for adjustments of follow-up procedures.

Zusammenfassung

Hintergrund und Zielsetzung

Aktuelle prognostische Modelle für Patienten mit Weichteilsarkomen basieren primär auf Staginginformationen. Therapieinformationen werden dabei nicht berücksichtigt. Die Berücksichtigung solcher Daten könnte die Vorhersage verbessern.

Material und Methoden

Für eine retrospektive, monozentrische, strahlentherapeutisch behandelte Kohorte mit 136 Weichteilsarkompatienten wurden Patientencharakteristika, Staging und therapieassoziierte Daten erhoben. Potenzielle mit dem Therapieansprechen assoziierte Informationen von neoadjuvant behandelten Patienten wurden aus therapeutischen Magnetresonanztomographie(MRT)-Datensätzen und pathologischen Befunden erhoben. Auf Basis dieser Informationen wurden Random-Forest-Modelle für die Vorhersage des 2‑Jahres-Überlebens bzw. des Progresses generiert. Prätherapie- und Therapiemodelle wurden verglichen.

Ergebnisse

Die prognostischen Modelle zeigten insgesamt eine gute Vorhersagekraft. Die Hinzunahme von Therapieinformationen konnte die Vorhersageeffizienz der 3 Klassifikationen verbessern: Vorhersage des Versterbens sowie des lokalen und systemischen Progresses („area under the receiver operating or characteristic curve“ [AUC] je 0,87, 0,88 und 0,84). Strahlentherapieassoziierte Informationen wie das Planungszielvolumen und die Gesamtdosis hatten einen großen Einfluss auf die Vorhersagekraft. Mit dem Therapieansprechen assoziierte Informationen wurden für die Vorhersage des Progresses selektiert und zeigten so eine mögliche prognostische Bedeutung.

Schlussfolgerung

Auf maschinellem Lernen basierende prognostische Modelle zeigten eine hohe Genauigkeit für die Vorhersage des Überlebens und Krankheitsprogresses durch Einschluss von Informationen zur Therapie und zum Therapieansprechen. Diese Modelle könnten für die individuelle Risikoabschätzung in der Nachsorge verwendet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gutierrez JC, Perez EA, Franceschi D et al (2007) Outcomes for soft-tissue sarcoma in 8249 cases from a Large State Cancer Registry. J Surg Res 141:105–114. https://doi.org/10.1016/j.jss.2007.02.026

    Article  PubMed  Google Scholar 

  2. Zagars GK, Ballo MT, Pisters PWT et al (2003) Prognostic factors for patients with localized soft-tissue sarcoma treated with conservation surgery and radiation therapy: an analysis of 1225 patients. Cancer 97:2530–2543. https://doi.org/10.1002/cncr.11365

    Article  PubMed  Google Scholar 

  3. Pisters PW, Leung DH, Woodruff J, Shi W, Brennan MF (1996) Analysis of prognostic factors in 1,041 patients with localized soft tissue sarcomas of the extremities. J Clin Oncol 14:1679–1689. https://doi.org/10.1200/JCO.1996.14.5.1679

    Article  PubMed  CAS  Google Scholar 

  4. Ramanathan RC, A’Hern R, Fisher C, Thomas JM (1999) Modified staging system for extremity soft tissue sarcomas. Ann Surg Oncol 6:57–69

    Article  PubMed  CAS  Google Scholar 

  5. Maki RG, Moraco N, Antonescu CR et al (2013) Toward better soft tissue sarcoma staging: building on american joint committee on cancer staging systems versions 6 and 7. Ann Surg Oncol 20:3377–3383. https://doi.org/10.1245/s10434-013-3052-0

    Article  PubMed  PubMed Central  Google Scholar 

  6. Suit HD, Mankin HJ, Wood WC et al (1988) Treatment of the patient with stage M0 soft tissue sarcoma. J Clin Oncol 6:854–862. https://doi.org/10.1200/JCO.1988.6.5.854

    Article  PubMed  CAS  Google Scholar 

  7. Edge SB, Compton CC (2010) The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 17:1471–1474. https://doi.org/10.1245/s10434-010-0985-4

    Article  PubMed  Google Scholar 

  8. Andrä C, Klein A, Dürr HR et al (2017) External-beam radiation therapy combined with limb-sparing surgery in elderly patients (>70 years) with primary soft tissue sarcomas of the extremities. Strahlenther Onkol 193:604–611. https://doi.org/10.1007/s00066-017-1109-x

    Article  PubMed  Google Scholar 

  9. Kattan MW, Leung DHY, Brennan MF (2002) Postoperative nomogram for 12-year sarcoma-specific death. J Clin Oncol 20:791–796. https://doi.org/10.1200/JCO.2002.20.3.791

    Article  PubMed  Google Scholar 

  10. Eilber FC, Brennan MF, Eilber FR et al (2004) Validation of the postoperative nomogram for 12-year sarcoma-specific mortality. Cancer 101:2270–2275. https://doi.org/10.1002/cncr.20570

    Article  PubMed  Google Scholar 

  11. Amin MB, Edge S, Greene F et al (eds) (2017) AJCC cancer staging manual, 8th edn. Springer, Cham

    Google Scholar 

  12. Tufman A, Kahnert K, Kauffmann-Guerrero D et al (2017) Clinical relevance of the M1b and M1c descriptors from the proposed TNM 8 classification of lung cancer. Strahlenther Onkol 193:392–401. https://doi.org/10.1007/s00066-017-1118-9

    Article  PubMed  Google Scholar 

  13. Abernethy AP, Etheredge LM, Ganz PA et al (2010) Rapid-learning system for cancer care. J Clin Oncol 28:4268–4274. https://doi.org/10.1200/JCO.2010.28.5478

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lambin P, van Stiphout RGPM, Starmans MHW et al (2013) Predicting outcomes in radiation oncology–multifactorial decision support systems. Nat Rev Clin Oncol 10:27–40. https://doi.org/10.1038/nrclinonc.2012.196

    Article  PubMed  Google Scholar 

  15. Wardelmann E, Haas RL, Bovée JVMG et al (2016) Evaluation of response after neoadjuvant treatment in soft tissue sarcomas; the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group (EORTC-STBSG) recommendations for pathological examination and reporting. Eur J Cancer 53(021):84–95. https://doi.org/10.1016/j.ejca.2015.09.021

    Article  PubMed  CAS  Google Scholar 

  16. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  17. Zimmer VA, Glocker B, Hahner N et al (2017) Learning and combining image neighborhoods using random forests for neonatal brain disease classification. Med Image Anal 42:189–199. https://doi.org/10.1016/j.media.2017.08.004

    Article  PubMed  Google Scholar 

  18. Chen T, Cao Y, Zhang Y et al (2013) Random forest in clinical metabolomics for phenotypic discrimination and biomarker selection. Evid Based Complement Alternat Med. https://doi.org/10.1155/2013/298183

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu M, Xu X, Tao Y, Wang X (2017) An improved random forest method based on RELIEFF for medical diagnosis. IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), pp 44–49

    Google Scholar 

  20. Kotti M, Duffell LD, Faisal AA, McGregor AH (2017) Detecting knee osteoarthritis and its discriminating parameters using random forests. Med Eng Phys 43:19–29. https://doi.org/10.1016/j.medengphy.2017.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rastgoo M, Lemaître G, More O et al (2016) Classification of melanoma lesions using sparse coded features and random forests. Proceedings Volume 9785, Medical Imaging 2016: Computer-Aided Diagnosis; 97850 C. https://doi.org/10.1117/12.2216973

    Book  Google Scholar 

  22. Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S (2005) A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21:631–643. https://doi.org/10.1093/bioinformatics/bti033

    Article  PubMed  CAS  Google Scholar 

  23. Eibe F, Hal MA, Ian H (2016) Witten the WEKA workbench. Online appendix for “data mining: practical machine learning tools and techniques”. Morgan Kaufmann, Burlington.

    Google Scholar 

  24. Vallières M, Freeman CR, Skamene SR, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496. https://doi.org/10.1088/0031-9155/60/14/5471

    Article  PubMed  Google Scholar 

  25. Abeshouse A, Adebamowo C, Adebamowo SN, Akbani R, Akeredolu T, Ally A et al (2017) Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell 171(8):950–965.e2. https://doi.org/10.1016/j.cell.2017.10.014

    Article  CAS  Google Scholar 

  26. Sica GT (2006) Bias in research studies. Radiology 238:780–789. https://doi.org/10.1148/radiol.2383041109

    Article  PubMed  Google Scholar 

  27. Wulfkuhle JD, Liotta LA, Petricoin EF (2003) Proteomic applications for the early detection of cancer. Nat Rev Cancer 3:267–275. https://doi.org/10.1038/nrc1043

    Article  PubMed  CAS  Google Scholar 

  28. Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11:685–696. https://doi.org/10.1038/nrg2841

    Article  PubMed  CAS  Google Scholar 

  29. Vallieres M, Kumar A, Sultanem K, El Naqa I (2013) FDG-PET image-derived features can determine HPV status in head-and-neck cancer. Int J Radiat Oncol Biol Phys 87:467. https://doi.org/10.1016/j.ijrobp.2013.06.1236

    Article  Google Scholar 

  30. Deist TM, Jochems A, van Soest J et al (2017) Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT. Clin Transl Radiat Oncol 4:24–31. https://doi.org/10.1016/j.ctro.2016.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  31. Peeken JC, Nüsslin F, Combs SE (2017) Radio-oncomics. Strahlenther Onkol. https://doi.org/10.1007/s00066-017-1175-0

    Article  PubMed  Google Scholar 

  32. Wichmann H, Güttler A, Bache M et al (2014) Inverse prognostic impact of ErbB2 mRNA and protein expression level in tumors of soft tissue sarcoma patients. Strahlenther Onkol 190:912–918. https://doi.org/10.1007/s00066-014-0655-8

    Article  PubMed  Google Scholar 

Download references

Funding

Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich (to JP, KK, SC), Alexander von Humboldt Foundation through German Federal Ministry for Education and Research, and the Bavarian Competence Network for Technical and Scientific High Performance Computing (to MB and BR), Allianz (to TG, BK, PT and AB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan C. Peeken.

Ethics declarations

Conflict of interest

J.C. Peeken, T. Goldberg, C. Knie, B. Komboz, M. Bernhofer, F. Pasa, K.A. Kessel, P.D. Tafti, B. Rost, F. Nüsslin, A.E. Braun, and S.E. Combs declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Additional information

Both authors contributed equally: Jan C. Peeken, Tatyana Goldberg.

Caption Electronic Supplementary Material

66_2018_1294_MOESM1_ESM.docx

Supplemental Tables and Supplemental Figure. Table S1: Performance assessment of six random forest-based prediction models. Table S2: Comparison of AUC values on training and test sets of six random forest-based prediction models. Figure S1: Precision/Recall curves for the spectrum of reliability scores for the pre-treatment models.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peeken, J.C., Goldberg, T., Knie, C. et al. Treatment-related features improve machine learning prediction of prognosis in soft tissue sarcoma patients. Strahlenther Onkol 194, 824–834 (2018). https://doi.org/10.1007/s00066-018-1294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-018-1294-2

Keywords

Schlüsselwörter

Navigation